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ABSTRACT
I show the veracity of the De Polignac conjecture, remained open since 1849, which says that for any natural
integer k there is an infinite number of pairs of prime integers differing by 2k, and | deduce the twin prime
conjecture (i.e. the case k=1) . | do this by using the Schoenfeld inequality that I have proved in [10] and by using
the same approach that | have used in [11].
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INTRODUCTION

Definition1: We call “the De Polignac conjecture”, the following assertion: “for any not null natural integer k, it
exists an infinite number of pairs of prime integers (p,q) such that:p — q = 2k” .The case: k = 1 is the twin prime
conjecture which says: “it exists an infinite number of prime integers p such that the numbers p+2 are also prime «.

History: this conjecture was announced by the French mathematician Alphonse De Polignac (1826-1862) in 1849
[4], [5] as a generalization of the twin prime conjecture.

From this date up to now the De Polignac conjecture (with the twin prime conjecture) remained without any
rigorous proof.

in 1900, the German Mathematician David Hilbert (1862-1943) said in his conference delivered before the second
international congress of mathematicians (hold at Paris in 1900) in the 8™ point about the prime number
problems : « After an exhaustive discussion of Riemann’s prime number formula, perhaps we may sometime be
in a position to attempt the rigorous solution on Goldbach problem... and further to attack the well known question
whether there are an infinite number of pairs of prime numbers with the difference 2, or even the more general
problem whether the linear Diophantine equation: ax + by = ¢ (with given integral coefficients each prime to the
others), is always solvable in prime numbers x and y ?... » [14].

In 1922, the English Mathematicians G.H. Hardy (1877-1947) and John Edensor Littlewood (1885-1977)
conjectured [13] that if:my(x) = card{p € P,suchthatp +d € P,,,} (ford integer =2) and if ¢, =
[Toepp=3 % =0.66016..., with Ry = HpEﬂ”.pEB.pld(z_:;) (Which is an irrational number> 1). Where P is
the set of prime positive integers and P, = {p € P, such that p < x}, then:

4 (x) Is equivalent, in the neighborhood of infinity, to: 2c,R, fzx(ln‘(l—;)z

In 1940, the Hungarian mathematician Paul Erdos (1913-1996), showed in [6] that it exists ¢ < 1 and it exists an
infinite number of integers k such that:p,,; — pr < cln(py), Where (py)x=1 denotes the strictly increasing
sequence of prime positive integers.

In 1966, the Chinese Mathematician Jingrun Chen (1933-1996) showed [2] (See also [19]) the existence of an
infinitely many prime integers p such that p+2 is the product of at most two prime factors.

In 2003, the American mathematician Daniel Goldston (1954-) and the Turkish mathematician Cem
Yildrim(1961-) showed that for any ¢>0, it exists an infinite number of integers k such that:p,,; — pr < cln(py).
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The proof containing some mistakes, the ultimo version of D.Goldston works on twin primes revised and
corrected with the help of three colleagues: Turkish, Japanese and Hungarian, was online on June 8, 2005[16].

In 2013, the Chinese mathematician Zhang Yitang (1955-.) showed [18] a weak form of the twin prime conjecture,
that is the existence of an infinite number of pairs of prime integers which does not differ one of the other more
than 7.107.

Finally, there are online some sites giving lists of twin primes for higher values [1].
For recent references on the subject see [8] and [19].

The note : my purpose in present brief note is to show that for any not null natural integer k, it exists an infinite
number of pairs (p, q) of prime integers such that : p — q = 2k, conjectured, since 1849, by A. De Polignac. |
use, for this, the Schoenfeld inequality that | have showed recently in [10] (i.e. the Riemann Hypothesis) and | use
the same method as that | have developed in [11].

The paper is organized as follows: the §1 contains an introduction giving the necessary definition with some brief
history, the 82 recalls the results needed in the proofs of our main theorems, the 83 gives the proof of the De
Polignac conjecture, the 84 contains the deduction of the twin primes conjecture and finally the 85 contains the
references of the paper for further reading.

Our main results are:

Theorem: (the De Polignac conjecture is true) Yk € N*3 an infinite number of pairs of prime integers
(p,q) such that;p —q = 2k

Corollary: (the twin primes conjecture is true) 3 an infinite number of pairs of prime integers (p, q) such that :
p—q=2

INGREDIENTS OF THE PROOFS
We will need the below results in the proofs of our main theorems.

Propositionl: (See [17], [20]) Denoting, for a finite subset A of a set E, by card (A) the number of its elements,
we have:

(D)card(®) = 0and card({a}) =1

(2) If A and B are two finite subsets of E, then: A € B = card(A) < card(B)

(3)Let A x B ={(a,b),a € A,b € B} the Cartesian product of the sets A and B. If A, B are finite, we have:
card(A X B) = card(A)card(B)

(4) If (A))1<i<n is a finite sequence of finite subsets of a set E such that A; N A; =@ for i+ j then
ccard(UL, 4) = X card(4;)

Definition2: (See [22]) Recall that a prime integer p=> 0 is an integer having its set of divisors= {1, p}. Let: P =
{p € N,p prime} = {2,3,5,7,11,13,17,19, ...} the set of positive prime integers. We know since Euclid (3"
Century before Jesus Christ) (See [7]) that P is an infinite strictly increasing sequence(py)is1-
For n an integer = 2, if P, = {p € P,p < n} the natural number: m(n) = card(P,,), its number of elements,
is called the prime counting function. We have: lim m(n) = +oandn < m = n(n) < n(m)

n-+oo

Definition3: (See [23]) two functions f and g defined on an interval of R containing a point a, are said to be
equivalent on the neighborhood of a (we note f~,g) if it exists a function e defined on a neighborhood of a
suchthat: f(t) = (1 + e(t))g(t) and 1im et)=0

-a

Two functions f and g defined on an interval]b, + o[ (resp.] — oo, c[) are said to be equivalent on the
neighborhood of +oo (resp. —oo) if the functions t — f (%) andt - g(%) are equivalent in the neighborhood of

0.

We know, by the rarefaction law of prime numbers showed independently by the Belgian mathematician Charles
Jean Etienne Gustave De La vallée Poussin (1866-1962) [3] and the French mathematician Jacques Salomon
Hadamard (1865-1963)[12], that :
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m(k)In(k)
— =

I.e. the functions: f(t) = n(t) and g(t) = ﬁ are equivalent in the neighborhood de +oo.

Proposition2: (the rarefaction law of prime numbers) [3], [12] we have: klir-ll:l 1

Definition4 : (See [23]) We have :
f = 0(g) in the neighborhhod of + 0 & JA€ RIB > 0Vt:t > A= |f(t)| < B|g(t)]
I have showed in [10] that:

Proposition3: (The Schoenfeld inequality [10]) we have:

vn > 2657 |x(n) — [ & |<M

0ln®)' — 8r
n dt

ie:m(n) = f; ot 0(¥nIn(n)) forn > 2657

The following rule, allowing in practice the determination of many limits, was discovered by the French
Mathematician Guillaume Francois de I’Hospital (or I’Hopital) (1661-1704).

Proposition4: (Hospital rule) (See [21]) If f and g are two derivable functions in an interval]a, b[ except perhaps

T _ _ : _ . _ C i O s @
onc €]a, b[ with:f(c) = g(c) = 0or ltgrclf(t) = oo and ltl_l‘)l’clg(t) = oo, then: ltl_r)rclg(t) IH 70

This can be extended to the cases: t » +® ort » —cand: t - a* ort - b~
The process is repeated if the derivatives f' and g’ satisfy the same conditionsas f and g...

Proposition5: (See [9] p 32, [15], p 4) for (x,,) any sequence of R, we have:
(Dliminfx,, = suppeyinfps,x, eXits always in [—oo, +o0]

(2)a < x, <b,Vn=a <liminfx, <b

(3)a < liminfx, > Ip e NVn =p:x, = a

(4) If () is a convergent sequence, then: liminf(x,, + y,) = liminfx,, + nlirfm Vn

THE PROOF OF THE DE POLIGNAC CONJECTURE

Define for k aninteger > 1, n aninteger > 2 and m an integer > 2, the following sets:
Inm ={(®,q) € Py X Py, suchthat0 < p—q<m}

Jnak = {(®, @) € Ppyzp X Py, suchthatp — g = 2k}

Jok = {(p,q) € P x P,such thatp — q = 2k}

The proof of the De Polignac conjecture will be deduced from the below lemmas.
Lemmal : Vk € N* Vn integer = 2,we have J, 5; C [k

Proof : (of lemmal)

The result follows by construction of the involved sets.

Lemma2 : We have:

(Dcard(lnm) = Lqep, (T(m + ) = m(q — 1))

(Z)Card(]n,Zk) = Yqer,(Mk + @) —m(2k — 1+ q))

Proof : (of lemma2)

(1)*We have : I o, = Jn2k U Inok—1 With : Ly o4 0 Jpop = @

*So: card(]n,Zk) = card(ln‘z,{) —card(l, 2x-1)

*But I, = {(p,q) € Py X Py, suchthatqg < p < q +mj}

=Ugep, ((Pm+q\Pq-1) X {q}) (the sign: «\ » denotes the set difference)

*By the assertion (4) of proposition 1, we have :

((]P)m+s\]P)s—1) X {S}) n ((Ip)m+t\ﬂmt—1) X {t}) = @ fors #t = Card([n,m) = ZquPn Card(]Pm+q\]P)q—1) =
Ygep,(m(m + q) —m(q — 1))

(2)Then:

card(Jnzx) = Loep,(1(2k + @) = 7(qg — 1)) = Xgep, (m(2k — 1+ q) —7(g — 1))
=Dqer, M2k + q) —m(2k — 1+ q))

Lemma3 : Forn — +oo, we have :

http: // www.gjaets.com/ © Global Journal of Advance Engineering Technology and Sciences
3]


http://www.gjaets.com/

: THOMSON REUTERS

[Ghanim et al., 5(7): July, 2018] ISSN 2349-0292
Impact Factor 3.802

n(n)— n(2657)

—( W2k +nln(2k +n) < qu]P’2657(7T(2k +q)—n(Rk—1+ q)) <

r)-x(z657) TEED) 2k + nin(2k + n)
Proof : (of lemma3)
*By the last result recalled in defintion2, we have :
0 < ¥ gepses, T2k + @) —m(2k — 1+ ) < X325 (m(2k + @) —n(2k — 1+ q))
=w(2k + 2657) —w(2k + 1)
*Because : lirp (m(n) — m(2657))V2k + nIn(2k + n) = +oo, we have for n great :
n—-+oo
— COorCED) 2k F nln(2k +n) < 0 < m(2k + 2657) — w(2k + 1) < FOTEED FE 02k + n)

4
(This is obtained by writing, for : A = m(2k + 2657) — n(2k + 1) > 0, the definition : lim x,, = +00 © VA >

n-+oo

03N € N such thatvn = N x,, > A, with x,, = (m(n) — 7(2657))V2k + nIn(2k + n).If: w(2k + 2657) —
w(2k + 1) = 0, we have evidently: m(2k + 2657) —w(2k +1) =0 < w\ﬂk + nIn(2k + n))

*The result follows.
Lemma4 : For n — 4oo and any not null natural integer k, we have :
1 1
card(Jnan) = f, Cqepn, 422658 g sy T 0 (M) — m(2657))V2k + nin(2k +n))
Jo((mr(n)-m(2657))V2k+nIn(2k+n)| 1
With : (m(n)-m(2657))V2k+nIn(2k+n) S 27
Proof : (of lemma4)
*By lemma2, we have :

card(Jnzk) = Loer,(T(2k + q) = m(2k =1+ q) )
=quu»n,qzzsss(7'f(2k +q)—mQk -1+ Q)) + X qepyes, (MK +q) — T2k — 1+ q))
*But for:q = 2658,Vk € N*,we have: 2k + q = 2k — 1+ q = 2657, so by the Schoenfeld inequality

(Proposition3 of the ingredients):
f2k+q dt

) - = (J2k+qInk + q)) < w2k + @) < [T+ = ((2k + qIn(2k + q)) And

In(t)

Jrect ]:(ft) —(fZk—T+qnk-1+¢q) <m2k—1+q)< [} ]:(tt) +
é(,/Zk —1+ ln(2k —1+¢q))

*S0, we have :
2k+q dt J2k+qIn(2k+q) 2k+q dt J2k=1+qIn(2k—1+q)+,/2k+q In(2k+q)
— < — < — —
ka—1+q In(t) 4 - f2k—1+q In(t) ( 8m ) < m(2k + q) m(2k—1+
2k+q  dt J2k+qIn(2k+q)
Q= ka—1+q In(t) + 4T
*So, for a great n, we have:

2k+ dt 1
TaePnax2658 foprq-1me + Backaes; T2k + @) = m(2k = 1+ @) = - Tqep,q2658((y/2k + g In(2k +

D) < card(Jnax) = Lgep, (T2k + @) — w2k — 1+ @) = Tgep,q22658(T 2k + @) — 2k — 1+ @) +

Yaepyes, M2k + @) = w2k — 1+ q)) < Tyep, g22658 J. zkquq 11:(2) + Xqep,es,(T(2Kk + q) —m(2k — 1 + q))
— Yqernaz2656((y 2k + qIn(2k + )

*But:vq € P, (so: q < n), suchthatgq = 2658 and Vk € N*, we have:

2k + qIn(2k + q) < V2k + nln(2k + n)

*S0:Y gep, g22658(v 2k + ¢ In(2k + q)) < card (P, \Py6s57,)V2k + nin(2k + n)

=(n(n) — m(2657))V2k + nin(2k + n)

*Then lemma3 gives, for n in the neighborhood of infinity and for any k a not nul natural integer :

2k+q dt (mr(n)-m(2657))V2k+nln(2k+n) 2k+q dt
LqePna22658 Jy_14q o < card(n1) < Eqepnqs2658 [_14q mo +

(mr(n)-m(2657))V2k+nln(2k+n)

21

2m
*Finally, by the variable change: t = s + 2k + g — 1 in the involved integral, and according to definition 4, we
have :

1 ds
card(Jnzr) = [y Tqepyqz2658 G

+ 0((r(n) — m(2657))V2k + nIn(2k + n))

2k—-1+q)
i . . 1 ds _
Lemma5: Vk €N n]_l)rllw Jo Zqepnq=2658 morzig = T
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Proof : (of lemmab)

*Fors € [0,1],q € P, and q = 2658, we have : In(s + 2k — 1 4+ q) < In(2k + n)

* _n(n)—ﬂ:(2657)< 1 ds
So In(2k+n) — fO 2"‘76]17’71"122658lr1(s+2k—1+q)

(qu]Pn,qEZGSS 1 = card(P,\Py¢57) = card(P,) — card(Pye5,) = m(n) — m(2657))
*But by the rarefaction law of prime numbers (proposition2 of the ingredients), and the Hopital rule (proposition4
of the ingredients), we have:

lim n(n)-m(2657) _ . n(n) _ li m(n)ln(n) n
n-+oo In(2k+n) T ot In(2k+n) T ot n In(n)In(n+2k)
= lim T ; - = lim - = lim ! = 1 =

n-+oo n n—+oo IN(M)IN(M+2k)  potoo IN(M)IN(2k+n) n+oo BEEFM  In(m) lim 0020, o

2k+n n-+oo n n-+oo2k+n
1 . 1 . n(2k+n . n? . n
— = lim —/——= = lim 2( +2k) = lim o lim 7= +oo for any not null k.
nlﬁlrfoom*-nlanfoo; n-+oo m+z n-+o 2n n-+oo 2n n-+oo
1 ds
*So: lim - =
Nt oo fo qull”n.q226581n(s+2k+q—1)

ds

. I LqePna226580s12k4q=1
Lem—ma6.We have :vk € N nl_l,Too (r(n)—m(2657))V2k+nIn(2k+n) -
Proof : (of lemma6)

*Fors € [0,1],q € P,, and q = 2658, we have : In(s + 2k — 1+ q) = In(2k + 2657)

! : T (n)-m(2657)
*S0:0< fO ZqEPn.qEZGSS In(s+ =
ds

2k—-1+q) — In(2k+2657)
%S0 0 < f;qulpn,qzzessm < 1
~ (m(n)-m(2657))VZk+nin(2k+n) ~ In(2k+2657)V2k+nIn(2k+n)
*The result follows by letting n - +oo
Lemma7 : Vk € N*, We have :
.. card(Jn,2k) . . 0(r(n)-m(2657))V2k+nIn(2k+n))
lrnlnf((11(‘/1)—11(2657))\/m1n(2k+n)) = hmlnf( (Et(n)—n(2657)))\/mln(2k+n) )
Proof : (of lemma?)
The result is obtained by combination of the assertion (4) of proposition 5, lemma4 and lemma 6.
Lemma8 : We have :
.. card(Jp,2k) . .~ 0(r(n)-m(2657))V2k+nIn(2k+n)) 1
(1)0 S lrnlnf((7!(11)—7!(2657))\/m1n(2k+n)) = hmlnf( (Et(n)—n(2657)))\/mln(2k+n) ) S
(2)Vk € N*3p,, € N Such that vn > p,: 0((r(n) — m(2657))V2k + nln(2k + n)) = 0
Proof : (of lemma8)
(1)The result is obtained by combination of the assertion of proposition5, lemma7 and the last relation of lemma4.
(2)*By the assertion (2) of proposition 5, We have :

Card(]n,Zk) * E3 e
(R (67T R InGk ) >0VkeN"Vn=>2659=>VkeN llmlnf((n(n)_n(2

—2m

card(Jn,2k) )
657))VZk+nIn(2k+n)’ —
0((r(n)-n(2657))V2k+nIn(2k+n)) >0

(m(n)-m(2657))V2k+nln(2k+n) )_
* The result follows, then, by use of the assertion 3 of proposition 5 and the fact that (n(n) -
n(2657))V2k + nIn(2k + n) > 0 Vk € N*Vn > 2659
Lemma : Vk € N*, we have : lim card(J,,,,) = +

n—-+oo

Proof : (of lemma9)
*By combination of lemma 4 and lemma8, we have :

* . 1 ds
vk € N*3p, € N Such that : Vn = py: card(J,2x) = | LaePna22658 15120590

*So, by lemma7, we have : Yk € N*liminf(

*Lemmab gives the result by tending n to +oo.

Theorem : (The De Polignac conjecture is true )For any not null natural integer k, it exists an infinite number of
pairs of prime integers(p, q) suchthat: p — q = 2k.l.e. Yk € N*" the set J,;, = {(p,q) E P X P,p — q = 2k} is
infinite.

Proof : (of the theorem)

*Suppose contrarily that : 3k € N* such that the set J,, is finite (i.e.:card (J,;) < +).

*By lemmal, we have : Vn =2 [, C Jo

*By the assertion (1) of propositionl, we have : Vn = 2 card(J,, 2x) < card(J,y)

*But, then, by lemma5 : nl_i)r&g card(]nyz,() =40 < card(J,;) <+

*This being impossible the theorem is proved.
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DEDUCTION OF THE TWIN PRIMES CONJECTURE
Corollary :(the twin primes conjecture is true) It exists an infinite number of prime integers p such that p + 2
is also prime.
Proof : (of the Corollary)
[1] The result is obtained by letting k = 1 in the above theorem.
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