GLOBAL JOURNAL OF ADVANCED ENGINEERING TECHNOLOGIES AND SCIENCES
 A REDUCED SPACE COMBINED WITH TABU SEARCH FOR SOLVING THE CHANNEL ALLOCATION PROBLEM
 Jayrani Cheeneebash*, Harry C S Rughooputh and Jose A Lozzano
 *Department of Mathematics, Faculty of Science, University of Mauritius, Reduit, Mauritius
 DOI: 10.5281/zenodo. 1163157

Abstract

With the rapid growth of mobile communications, solving the channel assignment problem has now become a new challenge in research. In this paper, we present an efficient technique for solving the Channel Assignment Problem (CAP). We first map a given CAP, P, to a smaller subset P^{\prime} of cells of the network, which actually reduces the search space. This reduction is done using a multi-colouring method. Then the tabu search algorithm is applied to solve the new problem P^{\prime}. This method reduces the computing time drastically. The latter is then used to solve the original problem by using a modified forced assignment with rearrangement (FAR) operation. The proposed method has been tested on well known benchmark problems. Optimal solutions have been obtained with zero blocked calls for all the cases with improved computation time. Furthermore, there are many unused frequencies which can be used for changes in demands.

KEYWORDS: Channel Allocation Problem, FAR, Tabu Search.

INTRODUCTION

Mobile communications are evolving rapidly with the progress of wireless communications and mobile computing. However, the frequency bandwidth is limited and an efficient use of channel frequencies becomes more and more important. The bandwidth spectrum is divided into a number of channels depending on service requirements. To satisfy high demand of mobile users, channels have to be assigned and re-used to minimize communication interference, thus increasing traffic carrying capacity. This is known as the channel assignment problem (CAP). In other words, the CAP is considered to be the generalised graph colouring problem, which is a well known NP-complete problem [13]. In this paper we assume a cellular network system where the demands of the cells are known a priori, and the channels are to be allocated to the cells statistically to cater sessions that are basically connection oriented. Here, the major aim is to reuse channels in cells while avoiding interference. A channel can be used by multiple base stations if the minimum distance at which two signals of the same frequency do not interfere.

Much research have been devoted to CAP in the past decades and many methods have been proposed, namely graph theory based methods [25, 3, 13, 10], simulated annealing [7], tabu search [5, 4], neural networks [15] and genetic algorithms [2, 11, 19]. This earlier work can be broadly classified into two categories. The first category algorithm determines an ordered list of calls and then assigns channels deterministically to the calls to minimise the required bandwidth $[21,14,1,6,8]$. The algorithms for the second category formulate a cost function, such as the number of blocked calls by a given channel assignment, and tries to minimise it with a given bandwidth of the system [7, 15, 18, 22, 17]. In the first category of algorithms, the derived channel assignment always fulfills all the interference constraints for a given demand. On the other hand it may be difficult to find an optimal solutions for large and difficult problems. For the second category of algorithms, it may be difficult to minimise the cost function to the desired value of zero for the hard problems, with the minimum number of channels. To evaluate the performance of these algorithms, well known benchmark problems have been solved. These benchmark problems will be discussed in details in the next section. The novelty in this paper is the presentation of the CAP P in a reduced space P^{\prime} which is derived using a multi-colouring method. The authors in [11] have used a completely different technique in grouping the cells. Our technique groups the cells into independent sets. This helps in solving the reduced space more efficiently and in this paper a tabu search algorithm is used [12]. It has been seen from literature that the ordering of cells is very important in assigning channels and thus the CAP can be seen as a permutation problem. An efficient way for solving such problems is the tabu search algorithm. Once the solution of P^{\prime} is found, the solution is expanded to the solution of the original problem P. However to solve the original problem P, a FAR algorithm [23] is applied. This method drastically reduces the computation time. Also redundant frequencies are found so that these can be used in case there are some changes in the demand vector. Our aim is to minimize the blocked calls given the required bandwidth and on the other hand one can also maximise the use of the redundant frequencies.

The paper is structured as follows: section 2 gives the mathematical formulation of the CAP, section 3 presents the tabu search algorithm, section 4 shows how the CAP is reduced and section 5 explains the FAR algorithm. Simulation results are discussed in section 6 and finally we draw some concluding remarks.

MATEMATICAL FORMULATION OF CAP

The CAP in cellular networks is an NP-complete problem [13]. It has been modelled as an optimization problem with binary solutions. The problem is characterized by a number of cells and a number of channels n and f respectively. It must fulfill the following three constraints [10]:

1. The Co-Channel Constraint (CCC): The same channel cannot be assigned to a pair of cells within a specified distance simultaneously.
2. The Adjacent Channel Constraint (ACC): Adjacent Channels cannot be assigned to adjacent cells simultaneously.
3. The Co-site Constraint (CSC): The distance between any pair of channels used in the same cell must be larger than a specified distance.

In 1982, Gamst and Rave [10] defined the general form of the CAP in an arbitrary inhomogeneous cellular network. In their definition, the compatibility constraints in an n-cell network are described by an $n \times n$ symmetric matrix called the compatibility matrix $C=\left[c_{i j}\right]$. Each non-diagonal element $c_{i j}$ in C represents the minimum separation distance in the frequency domain between a frequency assigned to a cell i and one assigned to cell j. If $c_{i j}=0$, it means that a channel assigned to cell i can be reused to cell $j ; c_{i i}=s$ means the co-site channel interference constraint is s channels. $c_{i j}=1$ means that the adjacent channel interference constraint is one channel. The channel requirements are described by an n-element vector which is called the demand vector D. Each element d_{i} in D represents the number of frequencies to be assigned to cell i. The solution of the CAP is represented by a matrix F. Each element of the matrix is defined according to the following expression:
$a_{i j}= \begin{cases}1 & \text { if channel } j \text { is assigned to cell } i \\ 0 & \text { otherwise }\end{cases}$

Let the frequencies be represented by positive integers $1,2,3, \ldots, f$ where f is a maximum allocation of the spectrum bandwidth. The mathematical model can be represented as follows [21, 24]:

1. n : Number of cells in the network.
2. d_{i} : Number of frequencies required in cell $i(1 \leq i \leq n)$ in order to satisfy channel demand.
3. C : Compatibility matrix, $C=\left(c_{i j}\right)$ denotes the frequency separation required between cell i and cell j.
4. $f_{i k}$: Channel is assigned to $k^{\text {th }}$ call in cell i.

Therefore the objective of CAP is
$\min _{i, k} f_{i k}$, subject to $\left|f_{i k}-f_{j r}\right| \geq c_{i j} \forall i, j, k \neq r$.
The channel assignment problem in the cellular network is to find a conflict free assignment with the minimum number of total frequencies, where C and D are given, in other words one tries to find the minimum of

$$
\max _{i, k} f_{i k}
$$

Given the above constraints, the CAP can be represented by means of a graph G, where the k - ${ }^{\text {th }}$ call to cell i is represented as a node $v_{i k}$ and the nodes $v_{i k}$ and $v_{j r}$ are connected by an edge with weight $c_{i j}$ if $c_{i j}>0$. Then, the channels are assigned to the nodes of the CAP graph in a specific order and a node will be assigned the channel corresponding to the smallest integer that will satisfy the frequency separation constraints with all the previously assigned nodes. Thus one can conclude that the ordering of the nodes is a key factor on the required bandwidth. Let us assume that there exists m nodes in the CAP graph, where m is defined as the total demand, in other words $m=\sum_{i=1}^{n} d_{i}$. Therefore the nodes can be ordered in m ! ways and finding the optimal ordering is an exhaustive task. In this paper we have used a tabu search adapted from [12] which is an efficient algorithm for solving permutation problems.

TABU SEARCH APPROACH

Tabu search is a heuristic method originally presented by Glover and Laguna [12]. It is a procedure to explore the solution space beyond optimality and exploits the past history of the search in order to influence its future steps. A distinguishing feature of tabu search is embodied in its exploitation of adaptive forms of memory, which equips it to penetrate complexities that often confound alternative approaches. We have adapted the tabu search algorithm described in [16] which deals with permutation neighborhood. We shall now describe the types of insert moves
and neighborhood that has been used in the tabu search. Denoting p to be a random ordering of the n cells. The Insert-Move $\left(p_{j} ; i\right)$ function consists of deleting p_{j} from its current position j to be inserted in position i. Thus one gets the following ordering p^{\prime} as shown in (1)

$$
p^{\prime}=\left\{\begin{array}{l}
\left(p_{1}, \ldots, p_{i-1}, p_{j}, p_{i}, \ldots, p_{j-1}, p_{j+1}, \ldots, p_{n}\right) \text { for } i<j, \tag{1}\\
\left.p_{1}, \ldots, p_{j-1}, p_{j+1}, \ldots, p_{i}, p_{j}, p_{i+1}, \ldots, p_{n}\right) \text { for } i>j .
\end{array}\right.
$$

Pairwise exchanges or moves are frequently used as one of the ways to define neighbourhoods in permutation problems; identifying moves that lead from one sequence to the next. The neighbourhood N comprises all permutations resulting from executing general insertion moves and is defined as

$$
N=\left\{\begin{array}{l}
p^{\prime}: \text { Insert }-\operatorname{Move}\left(p_{j}, i\right), \text { for } j=1, \ldots, n \tag{2}\\
\text { and } i=1,2, \ldots, j-1, j+1, \ldots, n
\end{array}\right.
$$

We define a first strategy, that scans the list of cells (in the order given by the current permutation) in search for the first cell $\left(p_{f}\right)$ whose movement results in a strictly positive move value. The move selected by the first strategy is then $\operatorname{Insert-Move}\left(p_{f} ; i_{-}^{*}\right)$, where i^{*} is the position that gives the best move value. The local search is based on choosing the best insertion associated with a given cell. The tabu search procedure starts by generating a random procedure p , and it alternates between an intensification and a diversification phase. The main aim of the search intensification is to explore more thoroughly the portions of the search space that seem "promising" in order to ensure that the best solutions in these areas are indeed found.

Intensification is based on some intermediate term memory, such as a recency memory, in which one records the number of consecutive iterations that various solutions components have been present in the current solution without interruption. The intensification phase starts by a random selection of a cell. The probability of selecting a cell j is proportional to some weight w_{j}. For our problem, we assign higher weights to those cells having a higher demand. The weight is given as

$$
w_{j}=\frac{d_{j}}{\sum_{j=1}^{n} d_{j}} .
$$

The move Insert-Move $\left(p_{j}, i\right) \in N^{j}$ with the largest move value is selected and it becomes the tabu-active for TabuTenure iterations. The number of times that cell j has been chosen to be moved is accumulated in the value freq (j). This frequency information is used for diversification purposes. The intensification phase is terminated after a maximum of a predefined number of iterations is executed without improvement. Before ending this phase, the $\operatorname{first}(N)$ procedure is applied to the best solution which is denoted by \hat{p}.

Diversification phase is an algorithmic mechanism that forces the search into previously unexplored areas of the search space. It is usually based on some form of long term memory of a sector and in our case it is the frequency memory in which one records the total number of iterations that various solution components have been present in the current solution. At each iteration of the diversification phase, a sector is selected randomly and the probability of selecting sector j is inversely proportional to the frequency count freq (j). The chosen sector is placed in the best position, as determined by the move values associated with the insert moves in N_{j}. This procedure is repeated for a maximum number of iterations.

CONSTRUCTION OF THE REDUCED SPACE

In this section we describe how the CAP graph G is reduced into a smaller space and we use tabu search to find an optimal solution which is then considered to solve the original CAP problem. Our aim is to find out independent sets of cells by the multicolouring method. Let us assume that G denotes the adjacency graph of the $n \times n$ matrix $C_{i, \mathrm{j}=1, \ldots, \mathrm{n}}$ and has a vertex set $V(G)$ and edge set $E(G)$. We say that $(i, j) \in E(G)(\mathrm{i} ; \mathrm{j})$ if and only if $c_{i j} \neq 0$. A node or vertex i is said to be connected to node j if $j \in \operatorname{adj}(i)$ where $\operatorname{adj}(i)=\{j \mid(i, j)\} \in E(G)$. The degree of vertex i is the size of its adjacency set $(\operatorname{adj}(i))$. A proper colouring of G is an assignment of colours to vertices such that no two end points of any edge share the same colour. A set S is said to be an independent set of $V(G)$ if $i \in S$ then $(i, j) \in E(G)$ or $(j, i) \in E(G)\} \rightarrow j \notin S$. Thus the elements in S cannot be connected among themselves. Independent sets can be obtained by applying the multicolouring algorithm given in [20]. In this paper we consider a simple greedy technique for obtaining a multicolouring of an arbitrary graph. Initially a random permutation of the cells is obtained. The algorithm then assigns a colour of zero to each node i. Then,it traverses
the graph in the natural order and assigns the smallest positive admissible colour to each node i visited. Here, an admissible colour is a colour not already assigned to any neighbour of node i.

Greedy Multi Colouring Algorithm

```
Set Colour(i) = 0; i=,\ldots.,N
for i=1:N
Colour(i)=min{l>0|j\not=\operatorname{Colour}(j),
for all }j\in\operatorname{adj(i)}
end
```

The end result of the algorithm is that each node i will be assigned the colour Colour(i). The algorithm stops until all the nodes have been visited.

After having obtained the independent sets, we then form the reduced compatibility matrix. We then apply the tabu search algorithm to assign the frequencies to the reduced space. We shall illustrate our method by means of an example, problem 3 in Table 4 from the Philadelphia benchmark problems. The CAP, P, has been formulated on a 21 -cell system whose compatibility matrix C and the demand vector $D 1$ is shown in Tables 1 and Tables 3 respectively. Denoting S (i) to be the set of all cells that are not connected, we illustrate an example for the problem described above. Suppose after applying the multi-colouring algorithm, we obtain the following: $S(1)=\{5,7,21\}$, $S(2)=\{10.19\}, S(3)=\{9,12,14\}, S(4)=\{8,13,18\}, S(5)=\{3,15\}, S(6)=\{6,20\}, S(7)=\{1,17\}, S(8)=$ $\{2,11\}$ and $S(9)=\{4,16\}$. From the set S we now construct the compatibility matrix $C^{\prime}=c^{\prime}\left(i^{\prime}, j^{\prime}\right)$ as follows.

We get $c^{\prime}=(1,2)=1$ being the maximum among all the $c_{i, j}$ where $i \in S(1)=\{8,21\}$ and $j \in S(2)=\{10,15\}$. We thus obtain the elements of C^{\prime} as shown in Table 2. In this example we can find that the demand for the elements in $S(1)$ are 12,30 and 25 . The maximum demand is 30 . Similarly the demand for $S(2)=40, S(3)=45, S(4)=$ $30, S(5) 25, S(6)=25, S(7)=15, S(8)=40$, and $S(9)=15$. Thus the modified demand vector $D^{\prime}=(30,40,45,30,25,25,15,40,15)$. The new problem P^{\prime} is represented by the following components:

1. a set $S=\{S(1), \ldots, S(z)\},(1 \leq i \leq z)$ of z distinct nodes, where z is the number of $S(i)$ subsets.
2. a demand vector $D^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{z}^{\prime}\right)$.
3. a compatibility matrix $C^{\prime}=c^{\prime}\left(i^{\prime}, j^{\prime}\right)$.
4. a frequency assignment matrix F^{\prime}.
5. a set of frequency separation constraints specified by the frequency separation matrix $\left|f_{i k}^{\prime}-f_{j l}^{\prime}\right|$ for all i, j, k, l (except for $i=j$ and $k=l)$.

Once P^{\prime} is constructed as above, the aim is to find an assignment F^{\prime} for this P^{\prime}. We describe how the CAP is solved using the tabu search algorithm. First, we define the blocked calls; they are the number of calls without an allocated frequency and the lower the number of blocked calls the better solution. Our aim is to minimize the number of blocked calls. We start our simulation by a random ordering or permutation of the cells and the tabu search is applied as shown in the algorithm below.

```
Procedure to apply the algorithm
Generate a random permutation order of the
the elements of S .
for j=1 to maxiter
Apply intensification phase.
Apply first(N).
Apply diversification phase.
Calculate solution matrix F.
[calculate number of blocked calls].
If number of blocked calls = 0, break loop.
Calculate maxglob iterations > 5
end j
Calculate blocked calls.
Continue the process 200 times.
```

[^0]Table 2: Compatibility Matrix P^{\prime} for Problem 3.

7	1	1	1	1	1	1	1	1
1	7	1	1	1	1	1	1	1
1	1	7	1	1	1	1	1	1
1	1	1	7	1	1	1	1	1
1	1	1	1	7	1	1	1	1
1	1	1	1	1	7	1	0	1
1	1	1	1	1	1	7	1	1
1	1	1	1	1	0	1	7	1
1	1	1	1	1	1	1	1	7

Now we need to apply the FAR algorithm to solve the original CAP problem with a view that our objective is to minimise the number of blocked calls. The assignment F^{\prime} may or may not be admissible depending on the available bandwidth. To derive the required channels for the CAP, we have adapted the method found in [11]. They considered the following two cases:

1. An assignment F^{\prime} is admissible: For this case, an admissible frequency for the original problem can be derived using F^{\prime} and the following result [11]:

Given the CAP problem P and the bandwidth, if the frequency assignments F^{\prime} for P^{\prime} are admissible, an admissible frequency can be derived from F^{\prime}. To get an assignment F, all the cells in $S(i) ; 1 \leq i \leq z$ are assigned the same set of channels. This assignment must satisfy the interference constraints because in $P^{\prime}, c^{\prime}\left(i^{\prime}, j^{\prime}\right)$ is the maximum among all the terms $c_{i j}$'s in C, where $i i \in S(i)$ and $j \in S(j)$. This assignment must also satisfy the demand vector $D=d_{i}$, since we choose the maximum among all those cells found in $S(i)$. When applying this procedure, one also gets some redundant frequencies. Suppose if cell i has been assigned d_{i}^{\prime} channels where the demand for that cell was d_{i} and $d_{i}^{\prime}>d(i)$, then $r_{i}=\left(d_{i}^{\prime}-d_{i}\right)$ number of frequencies remains unused or redundant in cell i.
2. Assignment F^{\prime} is not admissible: For this case the requirements for P^{\prime}. Let us assume F^{\prime} that satisfies the demand vector $D^{\prime \prime}=\left(d_{i}^{\prime \prime}\right)$ i $)$ instead of D^{\prime}, where $d_{i}^{\prime \prime}<d_{i}^{\prime}$ for some i. If we assign all the cells in S (i) the same set of channels to the cells in $S(i)$, there may be some blocked calls in some cells and redundant calls in some other cells. We denote the blocked calls and redundant frequencies as follows: $B L=\left(b_{i}\right)$ and $R=\left(r_{j}\right)$, respectively, where $b_{i}=d_{i}-d_{i}^{\prime \prime}$ if $d_{i}^{\prime \prime}<d_{i}$ and 0 otherwise, and $r_{j}=\left(d_{j}^{\prime \prime}-d_{j}\right)$, if $d_{j}^{\prime \prime}>d_{j}$ and 0 otherwise. We use these redundant frequencies in R and other available free channels to assign the blocked calls by using the FAR approach described in [14].

We give a brief description of the modified FAR algorithm. Let b_{i} be an unassigned requirement and Q be the set of already assigned frequencies. Suppose that from the set b_{i} there is no frequency available to be assigned without
any conflict to the set Q. The modified FAR tries to assign a frequency in L (where L is the given list of available frequencies) to satisfy the requirement b_{i} with minimum change or perturbation on the present assignment Q. The main aim of modified FAR is to identify a minimal subset b_{i} 's of Q , where each requirement can be reassigned simultaneously with an alternative feasible frequency so that b_{i} can be assigned a frequency without conflict to the present assignment Q. Denoting $B\left(b_{i} ; f_{i}\right)$ to be the subset of requirements in Q, which are conflicting and we assign frequency f_{i} to requirement b_{i}. In other words, fi becomes a feasible frequency for b_{i} if the frequency assignments for $B\left(b_{i} ; f_{i}\right)$ are undone. To identify one element of $S\left(b_{i}\right)$, we examine a sequence of f_{i} 's such that each time a $B\left(b_{i} ; f_{i}\right)$ is generated, we undo the corresponding portion of frequency assignment in Q and try to assign an alternative feasible frequency to each requirement of $B\left(b_{i} ; f_{i}\right)$ by the unforced assignment operation. The unforced operation finds the lowest frequency in L which is feasible to the present assignments in Q. If the frequency assignment of $B\left(b_{i} ; f_{i}\right)$ is successfully made, $B\left(b_{i} ; f_{i}\right)$ becomes $S\left(b_{i}\right)$ itself. In case such a frequency reassignment cannot be made for some $b_{j} \in B\left(b_{i}, f_{i}\right)$, one proceeds to identify $B\left(b_{i} ; f_{i}\right)$ and attempts to assign an alternative feasible frequency to each $b_{k} \in B\left(b_{j}, f_{j}\right)$. Such $B\left(b_{i} ; f_{i}\right)$ are blockers at the second depth level. In our paper, we have used the $(B 1-D 1) ;(B 2-D 1)$ and $(B 1-D 2)$. This modified FAR actually assigns a free channel to an unassigned requirement, say $t \in B L$. We consider a channel to be free and suitable to be assigned to t even if it conflicts with the requirements of some other cells containing some redundant channels. However, when we choose such a channel for assigning it to t, we may need to undo some of the assignments in neighbouring cells and adjust the assignments in other cells as well as keeping the degree of perturbation as low as possible.

RESULTS AND DISCUSSION

The new method described has been tested on eightbenchmark problems. The cellular structure is shown in Figure 1. Different cases have been considered with different interference constraints and demand vectors as shown in Table 3 and Table 4. The parameters shown in the tables have been explained in section 2.

Figure 1: Structure of cellular systems.
Table 3: Demand Vectors D1 and D2.

	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	d_{7}
D_{1}	8	25	8	8	8	15	18
D_{2}	5	5	8	12	25	25	30
	d_{8}	d_{9}	d_{10}	$\mathrm{~d}_{11}$	d_{12}	d_{13}	d_{14}
D_{1}	52	77	28	13	15	31	15
D_{2}	25	30	40	40	45	20	30
	d_{15}	d_{16}	d_{17}	d_{18}	d_{19}	d_{20}	d_{21}
D_{1}	36	57	28	8	20	13	8
D_{2}	25	15	15	30	20	20	25

From the example discussed in the previous section we obtain the solution for the reduced space as shown in Table 5. To obtain Table 6 we use the set S as follows: the cells in each element of $S(i), 1 \leq i \leq 8$ are assigned the same channels. For example the same channels are assigned to cell 8 and 21 . We thus obtain the following assignment as shown in Table 6. From literature, it has been seen that problems 2 and 6 are the most difficult to solve [2,11]. The result for problem 8 is shown in Table 7 before applying the modified FAR. From Table 7 we find that the demand is not met for cells $7,8,10,13,14,16,17,19$ and 21 . So we need to apply the modified FAR so as to assign the frequencies to those cells so as to meet the required demand. The results after applying the modified FAR is shown in Table 8. The computation was done using a personal computer of the following specifications: processor: Intel(R) Core(TM) 2 Duo CPU T5800 @ 2.00 Ghz 2.00 Ghz, RAM 2GB. To show that the reduction of the space has decreased the complexity and the computation time, we have run the different problems with and without reducing the space. A number of times the problem was run and the average time was calculated. The computation time for each problem is shown in Table 9.

Table 4: Different Problem cases

Problem	1	2	3	4
a.c.c	1	2	1	2
c.s.c	5	5	7	7
D_{1} / D_{2}	D_{1}	D_{1}	D_{1}	D_{1}
Lower bound	381	427	533	533
Problem	5	6	7	8
a.c.c	1	2	1	2
c.s.c	5	5	7	7
D_{1} / D_{2}	D_{2}	D_{2}	D_{2}	D_{2}
Lower Bound	221	253	309	309

Table 5: Channel Assignment P^{\prime} for problem 3

Table 6: Channel Assignment P^{\prime} for problem 3

108	6	2	3	5	6	5	4	1	7	6	1	4	1	2	3	108	4	7	6	5
115	13	9	10	12	13	12	11	8	14	13	8	11	8	9	10	115	11	14	13	12
122	20	16	17	19	20	19	18	15	21	20	15	18	15	16	17	122	18	21	20	19
129	27	23	24	26	27	26	25	22	28	27	22	25	22	23	24	129	25	28	27	26
136	34	30	31	33	34	33	32	29	35	34	29	32	29	30	31	136	32	35	34	33
143	41	37	38	40	41	40	39	36	42	41	36	39	36	37	38	143	39	42	41	40
150	48	44	45	47	48	47	46	43	49	48	43	46	43	44	45	150	46	49	48	47
157	55	51	52	54	55	54	53	50	56	55	50	53	50	51	52	157	53	56	55	54
164	62	58	59	61	62	61	60	57	63	62	57	60	57	58	59	164	60	63	62	61
171	69	65	66	68	69	68	67	64	70	69	64	67	64	65	66	171	67	70	69	68
178	76	72	73	75	76	75	74	71	77	76	71	74	71	72	73	178	74	77	76	75
185	83	79	80	82	83	82	81	78	84	83	78	81	78	79	80	185	81	84	83	82
192	90	86	87	89	90	89	88	85	91	90	85	88	85	86	87	192	88	91	90	89
199	97	93	94	96	97	96	95	92	98	97	92	95	92	93	94	199	95	98	97	96
206	104	100	101	103	104	103	102	99	105	104	99	102	99	100	101	206	102	105	104	103
	111	107		110	111	110	109	106	112	111	106	109	106	107			109	112	111	110
	118	114		117	118	117	116	113	119	118	113	116	113	114			116	119	118	117
	125	121		124	125	124	123	120	126	125	120	123	120	121			123	126	125	124
	132	128		131	132	131	130	127	133	132	127	130	127	128			130	133	132	131
	139	135		138	139	138	137	134	140	139	134	137	134	135			137	140	139	138
	146	142		145	146	145	144	141	147	146	141	144	141	142			144	147	146	145
	153	149		152	153	152	151	148	154	153	148	151	148	149			151	154	153	152
	160	156		159	160	159	158	155	161	160	155	158	155	156			158	161	160	159
	167	163		166	167	166	165	162	168	167	162	165	162	163			165	168	167	166
	174	170		173	174	173	172	169	175	174		172	169	170			172	175	174	173
	181			180		180	179	176	182	181	176	179	176				179	182		180
	188			187		187	186	183	189	188	183	186	183				186	189		187
	195			194		194	193	190	196	195	190	193	190				193	196		194
	202			201		201	200	197	203	202	197	200	197				200	203		201
	209			208		208	207	204	210	209	204	207	204				207	210		208
	216							211	217	216	211		211					217		
	223							218	224	223	218		218					224		
	230							225	231	230	225		225					231		
	237							232	238	237	232		232					238		
	244							239	245	244	239		239					245		
	251							246	252	251	246		246					252		
	258							253	259	258	253		253					259		
	265							260	266	265	260		260					266		
	272							267	273	272	267		267					273		
	279							274	280	279	274		274					280		
								281			281		281							
								288			288		288							
								295			295		295							
								302			302		302							
								309			309		309							

Table 7 : Results for Problem 8

5	3	215	1	5	3	283	215	5	283	3	1	215	215	5	3	215	5	283	5	3
12	10	222	8	12	10	290	222	12	290	10	8	222	222	12	10	222	12	290	12	10
19	17	229	15	19	17	297	229	19	297	17	15	229	229	19	17	229	19	297	19	17
26	24	236	22	26	24	304	236	26	304	24	22	236	236	26	24	236	26	304	26	24
33	31	243	29	33	31		243	33		31	29	243	243	33	31	243	33		33	31
40	38	250	36	40	38		250	40		38	36	250	250	40	38	250	40		40	38
47	45	257	43	47	45		257	47		45	43	257	257	47	45	257	47		47	45
54	52	264	50	54	52		264	54		52	50	264	264	54	52	264	54		54	52
61	59	271	57	61	59		271	61		59	57	271	271	61	59	271	61		61	59
68	66	278	64	68	66		278	68		66	64	278	278	68	66	278	68		68	66
75	73	285	71	75	73		285	75		73	71	285	285	75	73	285	75		75	73
82	80	292	78	82	80		292	82		80	78	292	292	82	80	292	82		82	80
89	87	299	85	89	87		299	89		87	85	299	299	89	87	299	89		89	87
96	94	306	92	96	94		306	96		94	92	306	306	96	94	306	96		96	94
103	101		99	103	101			103		101	99			103	101		103		103	101
110	108		106	110	108			110		108	106			110	108		110		110	108
117	115		113	117	115			117		115	113			117	115		117		117	115
124	122		120	124	122			124		122	120			124	122		124		124	122
131	129		127	131	129			131		129	127			131	129		131		131	129
138	136		134	138	136			138		136	134			138	136		138		138	136
145	143		141	145	143			145		143	141			145	143		145		145	143
152	150		148	152	150			152		150	148			152	150		152		152	150
159	157		155	159	157			159		157	155			159	157		159		159	157
166	164		162	166	164			166		164	162			166	164		166		166	164
173	171		169	173	171			173		171	169			173	171		173		173	171
180	178		176	180	178			180		178	176			180	178		180		180	178
187	185		183	187	185			187		185	183			187	185		187		187	185
194	192		190	194	192			194		192	190			194	192		194		194	192
201	199		197	201	199			201		199	197			201	199		201		201	199
208	206		204	208	206			208		206	204			208	206		208		208	206
	213		211		213					213	211				213					213
	220		218		220					220	218				220					220
	227		225		227					227	225				227					227
	234		232		234					234	232				234					234
	241		239		241					241	239				241					241
	248		246		248					248	246				248					248
	255		253		255					255	253				255					255
	262		260		262					262	260				262					262
	269		267		269					269	267				269					269
	276		274		276					276	274				276					276
			281								281									
			288								288									
			295								295									
			302								302									
			309								309									

5	3	215	1	5	3	283	215	5	283	3	1	215	215	5	3	215	5	283	5	3
12	10	222	8	12	10	290	222	12	290	10	8	222	222	12	10	222	12	290	12	10
19	17	229	15	19	17	297	229	19	297	17	15	229	229	19	17	229	19	297	19	17
26	24	236	22	26	24	304	236	26	304	24	22	236	236	26	24	236	26	304	26	24
33	31	243	29	33	31	1	243	33	56	31	29	243	243	33	31	243	33	1	33	31
			36	40	38	8	250	40	63	38	36	250	250	40	38	250	40	8	40	38
			43	47	45	15	257	47	70	45	43	257	257	47	45	257	47	15	47	45
			50	54	52	22	264	54	77	52	50	264	264	54	52	264	54	22	54	52
				61	59	29	271	61	84	59	57	271	271	61	59	271	61	29	61	59
				68	66	36	278	68	91	66	64	278	278	68	66	278	68	36	68	66
				75	73	43	285	75	98	73	71	285	285	75	73	285	75	43	75	73
				82	80	50	292	82	105	80	78	292	292	82	80	292	82	50	82	80
					87	57	299	89	112	87	85	299	299	89	87	299	89	57	89	87
					94	64	306	96	119	94	92	306	306	96	94	306	96	64	96	94
					101	71	108	103	126	101	99	1	178	103	101	1	103	71	103	101
					108	78	115	110	133	108	106	8	185	110			110	78	110	108
					115	85	122	117	140	115	113	15	192	117			117	85	117	115
					122	92	129	124	147	122	120	22	199	124			124	92	124	122
					129	99	136	131	154	129	127	29	206	131			131	99	131	129
					136	106	143	138	161	136	134	36	171	138			138	106	138	136
					143	113	150	145	168	143	141		164	145			145			143
					150	120	157	152	175	150	148		157	152			152			150
					157	127	164	159	182	157	155		150	159			159			157
					164	134	171	166	189	164	162		143	166			166			164
					171	141	178	173	196	171	169		136	173			173			171
						148		180	203	178	176		129				180			
						155		187	210	185	183		122				187			
						162		194	217	192	190		115				194			
						169		201	224	199	197		108				201			
						176		208	231	206	204		101				208			
									238	213	211									
									245	220	218									
									252	227	225									
									259	234	232									
									266	241	239									
									273	248	246									
									49	255	253									
									42	262	260									
									35	269	267									
									28	276	274									
											281									
											288									
											295									
											302									
											309									

Table 8: Final Solution for Problem 8

Table 9: Computational Time in seconds

Problem	1	2	3	4
WSR	$3.1106 \mathrm{e}+002$	$1.7795 \mathrm{e}+003$	$2.9514 \mathrm{e}+002$	61.96353
S.R	68.42439	$6.6045 \mathrm{e}+002$	43.3094	42.11038
Problem	5	6	7	8
WSR	$3.8956 \mathrm{e}+002$	$1.5733 \mathrm{e}+003$	$1.011 \mathrm{e}+002$	53.36247
S.R	53.197	58.015	79.17092	48.16189

CONCLUSION

In this paper we have considered a new method of reducing the space by forming independent sets using the compatibility matrix. This space reduction actually helps in reducing the complexity in solving the original problem and results in a gain in time. In this method we also obtain a set of redundant frequencies assigned to particular cells. This can be used in the event that there are small changes in the demand vector.

REFERENCES

[1] R. Battiti and A. Bertossi and D. Cavallaro "A randomised saturation degree heuristic for channel assignment in cellular radio networks". IEEE Transactions on Vehicular. Technology, Vol. 50(2), pp364-374, 2001.
[2] D. Beckmann and U. Killat, "A new strategy for the application of genetic algorithms to the channelassignment problem", IEEE Transactions on Vehicular Technology, Vol. 48(4), pp1261-1269, 1999.
[3] F. Box, "A heuristic technique for assigning frequencies to mobile radio nets", IEEE Transactions on Vehicular Technology, Vol. 27, pp. 57-64, 1978.
[4] A. Capone and M. Trubian, "Channel assignment problem in cellular systems: A new model and a tabu search algorithm", IEEE Transactions on Vehicular Technology, 48(4), pp. 1252-1260, 1999.
[5] D.J. Castelino, S. Hurley, and N.M. Stephens, "A tabu - search algorithm for frequency assignment ", Annals of Operations Research, Vol. 63, pp. 301-319, 1996.
[6] G. Chakraborty, An efficient heuristic algorithm for channel assignment problem in cellular radio network, IEEE Transactions on Vehicular Technology, Vol. 50(6), pp. 1528-1539, 2001.
[7] M. Duque-Anton, D. Kunz, and B. Ruber, "Channel-assignment for cellular radio using simulated annealing", IEEE Transactions on Vehicular Technology, Vol. 42(1), pp14-21, 1993.
[8] N. Funabiki, and Y. TAkefuji, "A neural network parallel algorithm for channel assignment in cellular radio network", IEEE Transactions on Vehicular Technology, Vol. 41(4),pp. 430-437, 1992.
[9] A. Gamst, "Some lower bounds for a class of frequency assignment problems", IEEE Transactions on Vehicular Technology,Vol. 35(1), pp. 8 -14, 1986.
[10] A. Gamst and W. Rave, "On frequency assignment in mobile automatic telephone systems, "IEEE Proc. GLOBECOM 82, pp 309-315, 1982.
[11] S.C. Ghosh, B.P. Sinha, and N. Das, "Coalesced cap: An improved technique for frequency assignment in cellular networks, " IEEE Transactions on Vehicular Technology, Vol. 55(2),pp. 640-653, 2006.
[12]F. Glover and M. Laguna, "Tabu search", chapter 3. In: Reeves, C.R.(ed) Modern heuristic techniques for combinatorial problems, McGraw-Hill, pp.70-150, 1995.
[13] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, Vol. 68(0), pp.1497-1514, 1980.
[14] T.M Ko, A frequency selective insertion strategy for fixed channel assignment, Proc. 5th IEEE Int. Symp. Personnal Indoor and Mobile Radio Communications, The Hague, The Netherlands, pp. 311-314, 1994.
[15]D. Kunz, Channel-assignment for cellular radio using neuralnetworks, IEEE Transactions on Vehicular Technology, Vol. 40, pp. 188-193, 1991.
[16] M. Laguna, R. Marti, and V. Campos, Intensification and diversification with elite tabu search solutions for the linear ordering problem, Computers and Operations Research, Vol. 26, pp. 1217-1230, 1999.
[17]R. Montemanni, and J.N.J. Moon, and D.H. Smith, An improved tabu search algorithm for the fixed spectrum assignment problem. IEEE Transactions on Vehicular Techology, Vol. 52(3), pp. 891-901, 2003.
[18] C.Y. Ngo, and V.O.K. Li, Fixed channel assignment in cellular radio networks using a modified genetic algorithm, IEEE Transactions on Vehicular Technology, Vol. 26:1, pp. 163-172, 1998.
[19]L.M.S.J. Revuelta, A new adaptive genetic algorithm for fixed channel assignment, Information Sciences, Vol. 177, pp.2655-2678, 2007.
[20] Y. Saad, A multi-elimination ILU pre-conditioner for general sparse matrices, SIAM J Sci. Comput., Vol. 17(4), pp. 830-837, 1996.
[21]K.N. Sivaranjan, R.J. McEliece, and J.W. Ketchum, Channel assignment in cellular radio. IEEE Veh. Tech. Conf, VTC 89, pp.846-850, 1989.
[22] K. Smith, and M.Palaniswami, Static and dynamic channel assignment using neural network. IEEE J. Sel. Commun., Vol.40(2),pp. 238-249, 1997.
[23]D. W. Tcha, J. H. Kwon, T. J. Choi, and S. H. Oh, Perturbation minimising frequency assignment in a changing TDMA/FDMA cellular environment. IEEE Transantions on Vehicular Technology, Vol. 49(2), pp.390-396, 2000.
[24] W. Wang and C.K. Rushforth, An adaptive local search algorithm for the channel assignment problem (cap). IEEE Transactions on Vehicular Technology, Vol. 45, pp. 459-466, 1996.
[25]J. A. Zoeller and C. L. Beall, A breakthrough in spectrum conserving frequency assignment technology, IEEE Transactions on Electromag. Compat., EMC , Vol. 19, pp.313-319, 1977.

[^0]: Table 1: Compatibility Matrix for Problem 3
 7111001111000001111100000 1711100011110000111110000 11771100111110000111000 $\begin{array}{llllllllllllllllllll}0 & 1 & 1 & 7 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0\end{array}$
 10000077110000011110000000 $1110 \begin{array}{llllllllllllllll}1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array} 0$
 $\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 7 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array} 1$ 01111110001171100101111011 $\begin{array}{llllllllllllllllllll}0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 7 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0\end{array} 1$

 100000111110000017111001100
 $\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 7 & 1 & 1 & 1 & 1\end{array}$ 01111100001111100011171111 $\begin{array}{llllllllllllllllllll}0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 7 & 0 & 1\end{array} 1$ 0000000011100000111110711 0000000000111100000111111171 0000000001111000011117

