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ABSTRACT 
The present work confirms the Beal’s conjecture, remained open since 1914 and saying that: “the Diophantine 

equation 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 (called « the Fermat generalized equation » or « the Fermat-Catalan equation ») has no 

solution in ℕ∗ for: 𝑥 > 2, 𝑦 > 2, 𝑧 > 2  with primitive integers 𝑎, 𝑏, 𝑐". I say that the present work confirms the 

Beal conjecture by using elementary tools of mathematics, such as the L’Hôpital rule and the intermediate value 

theorem. The proof uses also the Catalan-Mihailescu theorem, the growth properties of some elementary functions 

and some methods developed in my paper on the Fermat last theorem [13] published by the GJAETS in 

10/12/2018.      
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INTRODUCTION  

DEFINITION: We call « the  Tijdeman and Zagier conjecture » or «  Beal conjecture » or what I call « the 

Beal-Brun-Tijdeman-Zagier conjecture» the following assertion : « the Diophantine equation 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 

(called « the Fermat generalized equation » or « the Fermat-Catalan equation ») has no solution in ℕ∗ for : 𝑥 >
2, 𝑦 > 2, 𝑧 > 2 and 𝑔𝑑𝑐(𝑎, 𝑏, 𝑐) = 1(we say that : 𝑎, 𝑏, 𝑐 are primitive)», 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) denoting the greatest 

common divisor of the natural integers 𝑎, 𝑏 and 𝑐. 
 

Remark: 1) The case 𝑥 = 𝑦 = 𝑧 = 𝑛 is the Fermat last theorem which I have showed in 10/12/2018 (see [13]) 

by an elementary short proof and also proved in a hard, relatively long, proof in 1994 (see [28]) by A .Wiles.  

2) The condition 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 is done there to avoid trivialities. Indeed, going from the Diophantine 

equation: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧   multiplied by 𝑎21𝑥𝑏14𝑦𝑐6𝑧,  we obtain an infinite number of solutions of the Diophantine 

equation: 𝐴2 + 𝐵3 = 𝐶7 as: (𝑎11𝑥𝑏7𝑦𝑐3𝑧)2 + (𝑎7𝑥𝑏5𝑦𝑐2𝑧)3 = (𝑎3𝑥𝑏2𝑦𝑐𝑧)7 

Recall that the Diophantine equation 𝐴2 + 𝐵3 = 𝐶7 was completely resolved, in [16], where Poonen-Schaefer-

Stoll showed that the strictly positive entire primitive solutions are   (𝐴, 𝐵, 𝐶) = (2213459 , 1414 , 65) And 

(𝐴, 𝐵, 𝐶) = (15312283 , 9262 ,113)  

3) Recall that, if 𝜁(3) = ∑
1

𝑘3
+∞
𝑘=1  denotes the Apéry’s constant, the probability for three integers to be primitive is  

1

𝜁(3)
. 

4) Poonen-Schaefer-Stoll remarked in [16] that: for any integers (𝑎, 𝑏, 𝑐) with |𝑎| ≤ 𝐾
1

𝑥, |𝑏| ≤ 𝐾
1

𝑦, |𝑐| ≤ 𝐾
1

𝑧 the 

probability to have: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 is1/𝐾.  

 

Some History: *the conjecture was formulated independently by the banker and amateur mathematician Andrew 

Beal [18] in 1993 and the mathematicians Robert Tijdeman and Don Zagier in 1994. But it seems that it has 

appeared in the Brun works since 1914(see [8]). Andrew Beal [18] devoted, since 1997, an increasing price for 

any one can prove or disapprove his conjecture. 

*In 300 before Jesus Christ, Euclid resolved completely, in ([11], book x), the Diophantine equation 𝑎2 + 𝑏2 =
𝑐2 by giving its general solutions (See proposition4 below). 

*In the years 1600 Fermat showed that the Diophantine equation: 𝑎2 + 𝑏4 = 𝑐4 has no solution. 

*Then it was showed that the Diophantine equation: 𝑎𝑥 + 𝑏4 = 𝑐4 has no solution for any integer 𝑥. 
*In 1994, Wiles [28] showed by a relatively long proof of about 100 pages that the Diophantine equation: 

𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 has no solution with not null integers 𝑎, 𝑏, 𝑐 for 𝑛 > 2  by using powerful tools of number theory. 

This is the Fermat last theorem. 
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*In 2002, Preda Mihailescu [14], [15] showed that Diophantine equation: 1 + 𝑏𝑦 = 𝑐𝑧  has the sole solution 

(𝑏, 𝑐, 𝑦, 𝑧) = (2,3,3,2) (Resolving, so, what is known as the « Catalan conjecture»). The proof uses cyclotomic 

Fields and Galois modules. 

*In 2005 Bjorn Poonen, Edward F. Schaefer and Michael Stoll [16] showed that the Diophantine equations: 

𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 with {𝑥, 𝑦, 𝑧} = all permutations of (2,3,7) have only 4 solutions with no power>2. 

*In 2009, David Brown [4] studied the case: (𝑥, 𝑦, 𝑧) = (2,3,10) 

*In 2009, Michael Bennet, Jordan Ellenberg and Nathan Ng studied [1] the case:(𝑥, 𝑦, 𝑧) = (2,4, 𝑛) pour 𝑛 ≥ 4. 
*In 2014, Samir Siksek and Michael Stoll studied [17] the case (𝑥, 𝑦, 𝑧) = (2,3,15)  

*In 2018, M.Ghanim showed in [13] the Fermat last theorem, which is a special case of the Beal conjecture, by 

an elementary short proof. 

For more History see[2], [3] and  [19]. 

 

The note: The purpose of the present short note is to give a relatively elementary proof of the Beal conjecture 

based essentially, on the intermediate value theorem, the L’Hôpital rule, the Catalan-Mihailescu theorem, the 

growth properties of some elementary functions and some methods of [13]. 

The note is organized as follows. The §1 is an introduction giving the necessary definitions and some History. 

The §2 is devoted to the preliminaries where we give some remarks and the results needed in the proofs of our 

main results. The §3 gives the proof of the Beal conjecture. The §4 gives some references for further reading. 

 

Results: Our main result is: 

 

Theorem: (proving the Beal’s conjecture) let 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 three integers≥ 2 . If: 𝑛 = min(𝑥, 𝑦, 𝑧), then: 

∃𝑎, 𝑏, 𝑐 ∈ ℕ∗ such that ∶  𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 and  𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 ⇒ 𝑛 = 2 

 

Methods: The methods used in the paper are as follows. 

* Going from the integers 𝑥, 𝑦, 𝑧 ≥ 2 and 𝑎, 𝑏, 𝑐 ∈ ℕ∗such that 𝑔𝑐𝑑 (𝑎, 𝑏, 𝑐) = 1, and 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 , I show 

that 𝑛 = min(𝑥, 𝑦, 𝑧) = 2. For doing this I distinguish the following 2 cases: 

 

First case:𝑎 = 1.  

In this case 𝑛 = min(𝑥, 𝑦, 𝑧) = 2 follows from the Catalan-Mihailescu theorem (See Proposition7 below). 

 

Second case:  𝑎 ≥ 2 

Supposing contrarily that 𝑛 = min (𝑥, 𝑦, 𝑧) ≥ 3, I show, by the intermediate value theorem, that: 

∃𝜃 ∈]0,
1

2
[ such that:

1

2
(
𝑎𝑥

𝑐𝑧
)𝜃

ln(𝑎𝑥)

ln(𝑐𝑧)
+ 𝜃(

𝑏𝑦

𝑐𝑧
)𝜃

ln(𝑏𝑦)

ln(𝑐𝑧)
=

1

2
 

Then I prove, for this 𝜃, that the integer 𝑛 = min(𝑥, 𝑦, 𝑧) satisfies: 𝑛 <
3

2
(

1

1−𝜃
) 

So : 3 ≤ 𝑛 <
3

2
(

1

1−𝜃
) <

3

2
(

1

1−
1

2

) = 3  is a contradiction showing that : 𝑛 = 2. 

 

PRELIMINARIES 
Below are given some remarks and the results needed for showing our main theorem.  
Proposition1: (properties of the greatest common divisor) [26] gcd(𝑎, 𝑏, 𝑐) is the strictly positive greatest 

common divisor of the integers 𝑎, 𝑏, 𝑐. If gcd(𝑎, 𝑏, 𝑐) = 1 we say that “𝑎, 𝑏, 𝑐 are primitive or coprime”. The gcd 

has the below properties: 

(i)𝑑 = gcd(𝑎, 𝑏, 𝑐) ⇒ 𝑑 > 0 and 𝑑 divides the three integers 𝑎, 𝑏, 𝑐 

(ii)𝑑 divides the three integers 𝑎, 𝑏, 𝑐 and 𝑑>0⇒ 𝑑 ≤ gcd (𝑎, 𝑏, 𝑐) 

(iii)𝑑 divides the three integers 𝑎, 𝑏, 𝑐 ⇒ 𝑑 divides gcd (𝑎, 𝑏, 𝑐) 

(iv) (Bezout theorem [25]) gcd(𝑎, 𝑏, 𝑐) = 1 ⇔ ∃𝑢; 𝑣, 𝑤 ∈ ℤ 𝑢𝑎 + 𝑣𝑏 + 𝑤𝑐 = 1 

(v)gcd(𝑎, 𝑏, 𝑐) = 𝑑 ⇔ ∃𝑢, 𝑣, 𝑤 ∈ ℕ Such that {
𝑎 = 𝑢𝑑, 𝑏 = 𝑣𝑑, 𝑐 = 𝑤𝑑

gcd(𝑢, 𝑣, 𝑤) = 1
 

(vi)∗  gcd(𝑎, 𝑏, 𝑐) = 𝑑 ⇒ ∃𝑢, 𝑣, 𝑤 ∈ ℤ  𝑢𝑎 + 𝑣𝑏 + 𝑤𝑐 = 𝑑 

*The reciprocal implication is not always true 

(vii)gcd(𝑎, 𝑏, 𝑐) = 1 ⇔ ∀𝑛, 𝑚, 𝑝 ∈ ℕ∗ gcd(𝑎𝑛 , 𝑏𝑚, 𝑐𝑝) = 1 
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Proposition2: (The Gauss theorem) [20] if 𝑝 is a prime integer then 𝑝 is a divisor of the integer 𝑐𝑧 ⇒ 𝑝 is a divisor 

of the integer 𝑐. Recall that 𝑝 is a prime integer if its set of divisors is {1,𝑝}. 

 

Proposition3: (The fundamental theorem of arithmetic) [22] ∀𝑛 ∈ ℕ∗ − {1}∃𝑝1, 𝑝2, … , 𝑝𝑚 prime integers 

∃𝛼1, 𝛼2 … , 𝛼𝑚 ∈ ℕ∗ such that: 𝑛 = ∏ 𝑝𝑖
𝛼𝑖𝑚

𝑖=1  

In Particular: ∀𝑛 ∈ ℕ∗ − {1}∃𝑝 a prime number such that 𝑝 divides 𝑛 i.e. ∃𝑁 ∈ ℕ∗ such that: 𝑛 = 𝑝𝑁 

 

Proposition4: (Euclid (was in life about 300 before J.C)) (See [11], book X) the Diophantine equation: 

𝑎2 + 𝑏2 = 𝑐2, has the particular solution: (𝑎, 𝑏, 𝑐) = (3,4,5)   and has for general solutions:    {

𝑎 = 2𝑥𝑦𝑧

𝑏 = 𝑥(𝑧2 − 𝑦2)

𝑐 = 𝑥(𝑧2 + 𝑦2)

  

With: (𝑥, 𝑦, 𝑧) ∈ {(𝑝, 𝑞, 𝑟) ∈ ℕ3 such that 𝑟 > 𝑞 and 𝑝, 𝑞, 𝑟 are of different parity} 

 

Proposition5: For: (𝑥, 𝑦, 𝑧) =all the permutations of {2, 4, 4}, the Diophantine equation: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 has no 

solution in ℕ∗. 

 

Proof: (of proposition5) 

* For the Diophantine equation 𝑎2 + 𝑏4 = 𝑐4 we have: 𝑎2 + (𝑏2)2 = (𝑐2)2  

*So, by proposition4: 𝑎 = 3, 𝑏2 = 4 and 𝑐2 = 5 is a solution i.e. 𝑎 = 3, 𝑏 = 2 and 𝑐 = √5 

*But √5 ∉ ℚ ⇒ 𝑐 ∉ ℕ 

*This being impossible the result is showed. 

 

Proposition6: (Euler theorem) [12] The Diophantine  𝑎3 + 𝑏3 = 𝑐3 has no solutions in ℕ∗. 
 

Proposition7 :(Eugène Charles Catalan-Preda Mihailescu theorem) [14], [15] The Diophantine equation: 

1 + 𝑏𝑦 = 𝑐𝑧  (with: 𝑏, 𝑐, 𝑧, 𝑦 integers > 1) has the sole solution:   𝑏 = 2, 𝑐 = 3, 𝑦 = 3 and 𝑧 = 2.  
 

Proposition8 : (The Fermat last theorem) [13], [29] We have : 

                    ∃𝑎, 𝑏, 𝑐 ∈ ℕ∗ such that 0 < 𝑎 < 𝑏 < 𝑐 and 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 ⇒ 𝑛 = 2 

 

Proposition9 :( Poonen-Schaefer-Stoll [16]) for (𝑥, 𝑦, 𝑧) = all the permutations of {2, 3, 6} the sole case for 

which the Diophantine equation 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 has  non trivial solutions is 𝑥 = 6, 𝑎 = 1, 𝑦 = 3, 𝑏 = 2, 𝑧 =
2, 𝑐 = 3 

 

Proposition10: (Beukers theorem [3]) in the case (𝑥, 𝑦, 𝑧) = (2,2, 𝑧) with:𝑧 ≥ 2 or (𝑥, 𝑦, 𝑧) =
(2,3,3), (2,3,4), (2,3,5), the set of solutions of the Diophantine equation 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧  is empty or infinite. 

 

Proposition11: (Darmon-Granville theorem [10]) for any fixed choice of positive integers 𝑥, 𝑦, 𝑧 satisfying the 

hyperbolic case:
1

𝑥
+

1

𝑦
+

1

𝑧
< 1, only finitely many primitive triples (𝑎, 𝑏, 𝑐) solving the Diophantine equation 𝑎𝑥 +

𝑏𝑦 = 𝑐𝑧 exist. 

 

Note that this result resolves partially the Fermat-Catalan conjecture which is stronger because allows the 

exponents 𝑥, 𝑦, 𝑧 to vary. 

 

Proposition12: (See [18], p 9) we have:∀𝑥, 𝑦, 𝑧 ∈ ℕ∗  
1

𝑥
+

1

𝑦
+

1

𝑧
< 1 ⇒

1

𝑥
+

1

𝑦
+

1

𝑧
<

41

42
 

 

Proposition 13: For any integers 𝑥, 𝑦, 𝑧 ≥ 2, we have: 

(1)
1

𝑥
+

1

𝑦
+

1

𝑧
≥ 1 ⇒ 𝑛 = min (𝑥, 𝑦, 𝑧) ≤ 3 

(2)So: (𝑥, 𝑦, 𝑧) =
(3,3,3)𝑜𝑟 all the permutations of {2,4,4}𝑜𝑟 all the permutations of {2,3,6}or

all the permutations of {2,2, k}(k ≥
2)or all the permuations of {2,3,3}or all the permutations of {2,3,4}or all the permutations of {2,3,5} 

(3)𝑛 = min(𝑥, 𝑦, 𝑧) > 3 ⇒
1

𝑥
+

1

𝑦
+

1

𝑧
< 1 
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Proof: (of proposition 13) 

(1)We have: 𝑥 ≥ 𝑛, 𝑦 ≥ 𝑛, 𝑧 ≥ 𝑛 ⇒
1

𝑛
≥

1

𝑥
,

1

𝑛
≥

1

𝑦
,

1

𝑛
≥

1

𝑧
⇒

3

𝑛
=

1

𝑛
+

1

𝑛
+

1

𝑛
≥

1

𝑥
+

1

𝑦
+

1

𝑧
≥ 1 

⇒ 3 ≥ 𝑛 = min (𝑥, 𝑦, 𝑧) ≥ 2  

(2) The result follows from by a simple calculation, because the assertion (1) of proposition 13  ⇒ 𝑛 = 2 𝑜𝑟 𝑛 =
3. 

(3) The result is obtained by considering the contrapositive proposition of the assertion (1) in proposition13 (see 

proposition23 below). 

 

Proposition14: For the Diophantine equation: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧, we can suppose 
1

𝑥
+

1

𝑦
+

1

𝑧
< 1 called the hyperbolic 

case. 

 

Proof : (of proposition14) 

Indeed for the two other cases, we have : 

*Second case called the Euclidean case :
1

𝑥
+

1

𝑦
+

1

𝑧
= 1, a simple analysis shows that : 

(𝑥, 𝑦, 𝑧) = (3,3,3)𝑜𝑟 all the permutations of {2,4,4}𝑜𝑟 all the permutations of {2,3,6} 

These cases are completely resolved respectively by proposition5, proposition6 and proposition9 above. 

*Third case called the spherical case : 
1

𝑥
+

1

𝑦
+

1

𝑧
> 1, a simple analysis shows that : 

(𝑥, 𝑦, 𝑧) = all the permutations of {2,2, k}(k ≥
2)or all the permuations of {2,3,3}or all the permutations of {2,3,4}or all the permutations of {2,3,5}  

These cases are completely resolved by the Beukers theorem (proposition10).   

 

Proposition15: From the solutions, (𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧), of the Diophantine equation 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 

with 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 ;  𝑥, 𝑦, 𝑧 ≥ 2 and 
1

𝑥
+

1

𝑦
+

1

𝑧
< 1, we know the following ten ones : 

*16 + 23 = 32, 25 + 72 = 34(N. Bruin, 2003[6]), 132 + 73 = 29(N. Bruin, 2004[7]), 27 + 173 =
712(Poonen − Schaefer −  Stoll, 2005[16]), 35 + 114 = 1222(Bruin, 2003[6]) 

*177 + 762713 = 210639282, 14143 + 2213592 = 657, 92623 + 153122832 = 1137 

(The three discovered by Poonen-Schaefer-Stoll, 2005[16]) 

438 + 962223 = 300429072(Bruin, 2003[6]), 338 + 15490342 = 156133(Bruin, 1999[5])  

 

Remark: 1) for all the examples of the precedent proposition15, we have:  min(𝑥, 𝑦, 𝑧) = 2. 

2) S.Siksek and M.Stoll [17] talk, following H.Darmon [9] and H .Darmon-A. Granville [10], about the 

generalized Fermat conjecture (concerning the hyperbolic case: 
1

𝑥
+

1

𝑦
+

1

𝑧
< 1) which says that the sole non trivial 

primitive solutions are those cited in the above proposition15.  

 

Proposition16:  the hypothesis « 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 » is a necessary condition in the Beal-Brun-Tijdeman-Zagier 

conjecture. 

Proof: (of proposition16) 

(i)For example: 

*2𝑛 + 2𝑛 = 2𝑛+1, for:𝑛 ≥ 0. Note that: 2 divides 𝑔𝑐𝑑(2𝑛 , 2𝑛 , 2𝑛+1) ≠ 1. 
*33𝑛 + (2. 3𝑛)3 = 33𝑛+2   for 𝑛 ≥ 1. 
Note that: 3 is a common factor to 𝑎 = 3, 𝑏 = 2.3𝑛 and 𝑐 = 3  so 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) ≠ 1. 
*(𝑝𝑛 − 1)2𝑛 + (𝑝𝑛 − 1)2𝑛+1 = (𝑝. (𝑝𝑛 − 1)2)𝑛  for 𝑛 ≥ 3 and 𝑝 ≥ 2.  Note that 𝑎𝑛 − 1 is a common factor to 

𝑎 = 𝑝𝑛 − 1, 𝑏 = 𝑝𝑛 − 1 and 𝑐 = 𝑝(𝑝𝑛 − 1)2  so 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) ≠ 1 

*(𝑝(𝑝𝑛 + 𝑞𝑛))𝑛 + (𝑞(𝑝𝑛 + 𝑞𝑛))𝑛 = (𝑝𝑛 + 𝑞𝑛)𝑛+1  for 𝑛 ≥ 3 and  𝑝, 𝑞 ≥ 1 .  

Note that: 𝑝𝑛 + 𝑞𝑛 is a common factor to 𝑎 = 𝑝(𝑝𝑛 + 𝑞𝑛), 𝑏 = 𝑞(𝑝𝑛 + 𝑞𝑛) and 𝑐 = 𝑝𝑛 + 𝑞𝑛. 

(ii) We can, in fact, construct from any solution (𝑎1, 𝑏1, 𝑐1) such that 𝑎1
𝑥 + 𝑏1

𝑦
= 𝑐1

𝑧 an infinite number of solutions 

(𝑎𝑛, 𝑏𝑛 , 𝑐𝑛) such that: 

1) 𝑎𝑛
𝑥 + 𝑏𝑛

𝑦
= 𝑐𝑛

𝑧 . 

2) 𝑎𝑛 = 𝑎𝑛−1
𝑦𝑧+1

. 𝑏𝑛−1
𝑦𝑧

. 𝑐𝑛−1
𝑦𝑧

, 𝑏𝑛 = 𝑎𝑛−1
𝑥𝑧 . 𝑏𝑛−1

𝑥𝑧+1. 𝑐𝑛−1
𝑥𝑧  And  𝑐𝑛 = 𝑎𝑛−1

𝑥𝑦
. 𝑏𝑛−1

𝑥𝑦
. 𝑐𝑛−1

𝑥𝑦+1
 

3) 𝑔𝑐𝑑(𝑎𝑛 , 𝑏𝑛, 𝑐𝑛) ≠ 1 because  𝑎𝑛−1. 𝑏𝑛−1. 𝑐𝑛−1 divides 𝑔𝑐𝑑(𝑎𝑛 , 𝑏𝑛 , 𝑐𝑛) 
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Proposition17: (The Fermat’s little theorem) [21] for any prime integer 𝑝 and for any positive integer 𝑎: ∃𝑘 ∈
ℕ  𝑎𝑝 = 𝑎 + 𝑘𝑝 

 

Proposition18: For the Diophantine equation: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 , we can suppose 𝑥, 𝑦, 𝑧 ≥ 2 to be prime integers. 

Proof: (of proposition18) 

*By proposition3: ∃𝑝, 𝑞, 𝑟 prime integers ∃𝑋, 𝑌, 𝑍 ∈ ℕ∗ such that: 𝑥 = 𝑝𝑋, 𝑦 = 𝑞𝑌, 𝑧 = 𝑟𝑍 

*So:  𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 ⇔ (𝑎𝑋)𝑝 + (𝑏𝑌)𝑞 = (𝑐𝑍)𝑟 ⇔ 𝐴𝑝 + 𝐵𝑞 = 𝐶𝑟 , 𝐴 = 𝑎𝑋, 𝐵 = 𝑏𝑌, 𝐶 = 𝑐𝑍 

Proposition19: We have: 

        𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧And gcd(𝑥, 𝑦, 𝑧) ≠ 1 ⇒ 𝑥 = 2, 𝑦 = 2, 𝑧 = 2, 𝑎 = 3, 𝑏 = 4 𝑎𝑛𝑑 𝑐 = 5 

Proof: (of proposition 19) 

*gcd (𝑥, 𝑦, 𝑧) ≠ 1 ⇒ ∃𝑝 a prime number ∃𝑋, 𝑌, 𝑍 ∈ ℕ∗such that:𝑥 = 𝑝𝑋, 𝑦 = 𝑝𝑌, 𝑧 = 𝑝𝑍 

*So: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 ⇒ (𝑎𝑋)𝑝 + (𝑏𝑌)𝑝 = (𝑐𝑍)𝑝 

*So, the Fermat last theorem (see [13]) and proposition 4⇒ 𝑝 = 2, 𝑎𝑋 = 3, 𝑏𝑌 = 4, 𝑐𝑍 = 5 

*Finally: Gauss theorem ⇒ 𝑋 = 1, 𝑎 = 3, 𝑌 = 1, 𝑏 = 4, 𝑍 = 1, 𝑐 = 5 

Proposition20:  if   gcd(𝑎, 𝑏, 𝑐) = 𝑝 ≠ 1, we have: 

(1)𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 ⇒ ∃𝛼, 𝛽, 𝛾 ∈ ℕ∗:(𝛽𝑦 − 𝛼𝑥)(𝛾𝑧 − 𝛼𝑥)(𝛾𝑧 − 𝛽𝑦) = 0 

(2) ∃𝛿, 𝜖, 𝜃 ∈ ℕ∗ Such that: 𝑝 divides 𝜃𝑧 − 𝜖𝑦 − 𝛿𝑥 

Proof: (of proposition20) 

(1)*If gcd(𝑎, 𝑏, 𝑐) ≠ 1, then: ∃𝑝 a prime number∃𝛼, 𝛽, 𝛾 ∈ ℕ∗∃𝐴, 𝐵, 𝐶 ∈ ℕ∗ such that: 𝑎 = 𝐴𝑝𝛼 , 𝑏 = 𝐵𝑝𝛽 , 𝑐 =
𝐶𝑝𝛾 and  𝑝 is not a divisor of  𝐴, 𝐵 and 𝐶.  
*We have: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 ⇔ 𝑝𝛼𝑥𝐴𝑥 + 𝑝𝛽𝑦𝐵𝑦 = 𝑝𝛾𝑧𝐶𝑧 

First case: 𝛼𝑥 < 𝛽𝑦 

*We have: 𝐴𝑥 + 𝑝𝛽𝑦−𝛼𝑥𝐵𝑦 = 𝑝𝛾𝑧−𝛼𝑥𝐶𝑧 

*So, we have necessarily: 𝛾𝑧 − 𝛼𝑥 = 0 

Indeed, by the Gauss theorem: 𝛾𝑧 − 𝛼𝑥 < 0 ⇒ 𝑝 divides 𝐶 and 𝛾𝑧 − 𝛼𝑥 > 0 ⇒ 𝑝 divides 𝐴  

Second case: 𝛼𝑥 > 𝛽𝑦 

*We have:𝑝𝛼𝑥−𝛽𝑦𝐴𝑥 + 𝐵𝑦 = 𝑝𝛾𝑧−𝛽𝑦𝐶𝑧 

* As in the first case, we have necessarily: 𝛾𝑧 − 𝛽𝑦 = 0 

Third case: 𝛼𝑥 = 𝛽𝑦 

*So, in any case, we have:∃𝛼, 𝛽, 𝛾 ∈ ℕ∗ such that: 

                      𝛼𝑥 = 𝛽𝑦 Or 𝛾𝑧 = 𝛼𝑥 Or 𝛾𝑧 = 𝛽𝑦 ⇔ (𝛽𝑦 − 𝛼𝑥)(𝛾𝑧 − 𝛼𝑥)(𝛾𝑧 − 𝛽𝑦) = 0   

(2)*By the Fermat’s little theorem (see proposition 17): 𝑥, 𝑦, 𝑧 being prime integers ⇒ ∃𝛿, 𝜖, 𝜃 ∈ ℕ∗ such that: 

𝑎𝑥 = 𝑎 + 𝛿𝑥, 𝑏𝑦 = 𝑏 + 𝜖𝑦, 𝑐𝑧 = 𝑐 + 𝜃𝑧 

*So: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 ⇒ 𝑎 + 𝑏 − 𝑐 = 𝑝(𝐴𝑝𝛼−1 + 𝐵𝑝𝛽−1 − 𝐶𝑝𝛾−1) = 𝜃𝑧 − 𝜖𝑦 − 𝛿𝑥 

Proposition 21: For the Diophantine equation: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 , we have: 

                                           𝑎 = 0  And gcd(𝑎, 𝑏, 𝑐) = 1 ⇒ 𝑏 = 𝑐 = 1 

Proof: (of proposition 21) 

The case:𝑎 = 0 ⇒ 𝑏𝑦 = 𝑐𝑧 , so: gcd(𝑎, 𝑏, 𝑐) = 1 ⇒ 𝑐 = 𝑏 = 1 

Indeed: if 𝑏 ≠ 1, by proposition3:∃𝐵 ∈ ℕ∗ ∃𝑝 ≥ 2 a prime integer such that 𝑏 = 𝐵𝑝 

So: 𝐴𝑦𝑝𝑦 = 𝑐𝑧 and Gauss theorem⇒ 𝑝 devides 𝑐 ⇒ ∃𝐶 ∈ ℕ∗ such that:𝑐 = 𝐶𝑝 

Then 𝑝, being a common devisor for 𝑎 = 0, 𝑏 = 𝐵𝑝, 𝑐 = 𝐶𝑝, and gcd(𝑎, 𝑏, 𝑐) = 1 being the greatest common 

devisor, we have: 𝑝 devides 1 i.e. 𝑝 = 1. This contradicting "𝑝 ≥ 2" the assertion is proved 

*The case, being completely determined, we can suppose: 𝑎 > 0  

Proposition22:(The contrapositive proposition and some logic)) [27] if 𝑃, 𝑄 are two propositions, and if we  note 

by 𝑛𝑜𝑛(𝑃) the negation of 𝑃 (For example: non(∃) = ∀, 𝑛𝑜𝑛(=) =≠, 𝑛𝑜𝑛(𝑃 𝑎𝑛𝑑 𝑄) = 𝑛𝑜𝑛(𝑃)𝑜𝑟 𝑛𝑜𝑛(𝑄)), we 

call the  contrapositive proposition of the proposition (𝑃 ⇒ 𝑄) the proposition: (𝑛𝑜𝑛(𝑄) ⇒ 𝑛𝑜𝑛(𝑃)). We have: 

(𝑃 ⇒ 𝑄) ⟺ (𝑛𝑜𝑛(𝑄) ⇒ 𝑛𝑜𝑛(𝑃)). Recall that: 

(1) (𝑃 ⇒ 𝑄) ⟺ (𝑛𝑜𝑛(𝑃)𝑜𝑟𝑄)   

(2) ((∀𝑥 ∈ 𝐸)  (𝑃(𝑥)𝑜𝑟 𝑄(𝑥))) ⇒ ((∀𝑥 𝑃(𝑥))𝑜𝑟 (∃𝑥 𝑄(𝑥))) 

(3) ((∀𝑥 ∈ 𝐸) ( 𝑃(𝑥)𝑜𝑟 𝑄(𝑥))) das not imply ((∀𝑥 ∈ 𝐸  𝑃(𝑥))𝑜𝑟 (∀𝑥 ∈ 𝐸 𝑄(𝑥))) 

(4) ((∀𝑥 ∈ 𝐸)( 𝑃(𝑥)𝑎𝑛𝑑 𝑄(𝑥))) ⇔ ((∀𝑥 ∈ 𝐸 𝑃(𝑥)) and (∀𝑥 ∈ 𝐸 𝑄(𝑥))) 

(5) ((∃𝑥 ∈ 𝐸)(𝑃(𝑥)𝑎𝑛𝑑 𝑄(𝑥))) ⇒ ((∃𝑥 ∈ 𝐸 𝑃(𝑥))𝑎𝑛𝑑 (∃𝑥 ∈ 𝐸 𝑄(𝑥))) 

(6) ((∃𝑥 ∈ 𝐸 𝑃(𝑥))𝑎𝑛𝑑 (∃𝑥 ∈ 𝐸 𝑄(𝑥)))) das not imply ((∃𝑥 ∈ 𝐸)(𝑃(𝑥)𝑎𝑛𝑑 𝑄(𝑥)))  
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(7) ((∃𝑥 ∈ 𝐸)(𝑃(𝑥)𝑜𝑟 𝑄(𝑥))) ⇔ ((∃𝑥 ∈ 𝐸 𝑃(𝑥))𝑜𝑟 (∃𝑥 ∈ 𝐸 𝑄(𝑥))) 

Proposition23: (The intermediate value theorem) [23] Let 𝜑: [𝑎, 𝑏] → ℝ (with: 𝑎 < 𝑏) a continuous function, 

then :𝜑(𝑎)𝜑(𝑏) < 0 ⇒ ∃𝑐 ∈]𝑎, 𝑏[   such that 𝜑(𝑐) = 0  

Recall that: 

(i)lim
𝑥→𝑎

𝑓(𝑥) = 𝑙 ⇔ ∀𝜖 > 0∃𝛿 > 0 such tha𝑡: |𝑥 − 𝑎| < 𝛿 ⇒ |𝑓(𝑥) − 𝑙| < 𝜖 

(ii) The function 𝑓 is continuous in the point 𝑎 ⇔ lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎) 

(iii) The function 𝑓 is continuous on an interval 𝐼 ⇔ 𝑓 is continuous in any point 𝑎 ∈ 𝐼 

Proposition24: (L’Hôpital rule) [24]Let 𝑓 and 𝑔 two continuous functions on]𝑎, 𝑏] (𝑎 < 𝑏), having a derivative 

on ]𝑎, 𝑏[ and such that: lim
𝑡→𝑏−

𝑓(𝑡) = lim
𝑡→𝑏−

𝑔(𝑡) =0 (we call that we are in an indeterminate form (IF)
0

0
) or   

lim
𝑡→𝑏−

𝑓(𝑡) = ±∞, lim
𝑡→𝑏−

𝑔(𝑡) = ±∞  (we call that we are in an indeterminate form (IF)
∞

∞
) then : lim

𝑡→𝑏−

𝑓(𝑡)

𝑔(𝑡)
=

lim
𝑡→𝑏−

𝑓′(𝑡)

𝑔′(𝑡)
. The process is repeated if lim

𝑡→𝑏−

𝑓′(𝑡)

𝑔′(𝑡)
 is, also, an IF 

0

0
 or an IF 

∞

∞
 … and so on until the determination.   

Recall that : 

(i)The function 𝑓 is derivable in the point 𝑎 ⇔ lim
𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
= 𝑓′(𝑎) ∈ ℝ 

(ii) (𝑓𝑛)′ = 𝑛𝑓′𝑓𝑛−1 (iii)(ln(|𝑓|))′ =
𝑓′

𝑓
 

(iii)If we mean by an increasing function on the interval 𝐼 a function 𝑓 such that : ∀𝑥, 𝑦 ∈ 𝐼: 𝑥 < 𝑦 ⇒ 𝑓(𝑥) <
𝑓(𝑦) and by a decreasing one a function 𝑔 such that  ∀𝑥, 𝑦 ∈ 𝐼: 𝑥 < 𝑦 ⇒ 𝑔(𝑦) < 𝑔(𝑥) we have for derivable 

functions 𝑓 and 𝑔 : 
(a)𝑓 strictly increasing on 𝐼 ⇔ ∀𝑥 ∈ 𝐼  𝑓′(𝑥) > 0 

(b) 𝑔 strictly decreasing on 𝐼 ⇔ ∀𝑥 ∈ 𝐼  𝑔′(𝑥) < 0 

 

THE PROOF OF BEAL CONJECTURE 
Theorem: (Proving the Beal’s conjecture) let 𝑥, 𝑦 and 𝑧 three integers≥ 2 .  

∃𝑎, 𝑏, 𝑐 ∈ ℕ∗ such that ∶  𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧  and  𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 ⇒ min(𝑥, 𝑦, 𝑧) = 2 

Proof :( of the theorem) 

*Let 𝑥, 𝑦, 𝑧 three integers ≥ 2, Suppose that ∃ 𝑎, 𝑏, 𝑐 ∈ ℕ∗ such that: 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 and 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧  and 

show that 𝑛 = min(𝑥, 𝑦, 𝑧) = 2 

*Suppose contrarily that: 𝑛 = min (𝑥, 𝑦, 𝑧) ≥ 3 

*Remark: by propositions 11 and 12 we can also suppose 𝑥, 𝑦, 𝑧 to be prime integers such that 

gcd(𝑥, 𝑦, 𝑧) = 1(⇔ ∃𝛼, 𝛽, 𝛾 ∈ ℤ such that 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 = 1) and 
1

𝑥
+

1

𝑦
+

1

𝑧
< 1 

*The proof of the theorem will be deduced from the below lemmas. 

Lemma1:  gcd(𝑎, 𝑏, 𝑐) = 1 ⇒we can suppose 0 < 𝑎𝑥 < 𝑏𝑦 < 𝑐𝑧 and 2𝑎𝑥 < 𝑐𝑧 < 2𝑏𝑦 

Proof: (of lemma1) 

*We have:𝑎𝑥 = 𝑐𝑧 − 𝑏𝑦 > 0 ⇒ 𝑏𝑦 < 𝑐𝑧 . 

*The order " ≤ " being total, on ℕ, we have:𝑏𝑦 ≥ 𝑎𝑥𝑜𝑟 𝑎𝑥 ≥ 𝑏𝑦 

*So, we can suppose: 𝑎𝑥 ≤ 𝑏𝑦 

*But  𝑧 ≥ 2 and 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 ⇒ 𝑎𝑥 ≠ 𝑏𝑦.Indeed, if not we have:𝑎𝑥 + 𝑏𝑦 = 2𝑏𝑦 = 𝑐𝑧  and 𝑐 ≠ 0 (so: c ≥
2) ⇒ ( by the Gauss theorem, 2 being a prime integer): 2 is a divisor of 𝑐. writing 𝑐 = 2𝑝𝑞 with 𝑞 an odd integer, 

we have:𝑏𝑦 = 2𝑝𝑧−1𝑞𝑧. Then 𝑏 being an odd integer (Because: 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 and 𝑐 an even integer), we must 

have: 𝑝𝑧 − 1 = 0, which is impossible because of our hypothesis 𝑧 ≥ 2.  
*So, we can suppose: 𝑎𝑥 < 𝑏𝑦 

*Finally, we have: 2𝑏𝑦 = 𝑏𝑦 + 𝑏𝑦 > 𝑐𝑧 = 𝑎𝑥 + 𝑏𝑦 > 𝑎𝑥 + 𝑎𝑥 = 2𝑎𝑥 

*In conclusion, we can suppose: 0 <  𝑎𝑥 < 𝑏𝑦 < 𝑐𝑧  with 2𝑎𝑥 < 𝑐𝑧 < 2𝑏𝑦  

Now  

*Working with integers: 𝑎𝑥 > 0 ⇒ 𝑎 ≥ 1 

*First case: 𝑎 = 1 

*Remark: This case is possible because 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 

*By the Catalan-Mihailescu theorem (Proposition3 given above in the § « Preliminaries »), the sole solution of 

the equation:  𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 for 𝑎 = 1 (with: 𝑥, 𝑦, 𝑧, 𝑏, 𝑐 integers>1) is :(𝑏, 𝑐, 𝑦, 𝑧) = (2,3,3,2). So, we have 

effectively:  𝑛 = min(𝑥, 𝑦, 𝑧) = min(𝑥, 3,2) = 2.   
*Suppose, now, that we are in the second case:  

*Second case:  𝑎 ≥ 2 
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Lemma2: We have:  𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 , gcd(𝑎, 𝑏, 𝑐) = 1 ⇒ 3 ≤ 𝑎 or 3 ≤ 𝑏 

Proof: (of lemma2) 

*We have: 1 < 2𝑥 ≤ 𝑎𝑥 < 𝑏𝑦 ⇒ 𝑎 > 1 and 𝑏 > 1 

*Suppose contrarily that 1 < 𝑎 < 3 and 1 < 𝑏 < 3 we have: 𝑎 = 𝑏 = 2  i. e. 2𝑥 + 2𝑦 = 𝑐𝑧 

*So, by the Gauss theorem, the prime integer 2 dividing 2𝑥 and 2𝑦, 2 divides 𝑐𝑧 and 2 divides 𝑐. 

*But: 2 divides 𝑐 ⇒ 2 divides gcd(𝑎, 𝑏, 𝑐) = gcd(2,2, 𝑐) = 1 (By the assertion (iii) of proposition1) 

*This being impossible the result follows. 

Lemma3:  We have: 

(1)𝑎 ≥ 2 And 𝑛 = min (𝑥, 𝑦, 𝑧) ≥ 3 ⇒ 𝑐𝑧 > 𝑏𝑦 > 𝑎𝑥 > 𝑒2 

(2) 𝑎 ≥ 2 And 𝑛 = min (𝑥, 𝑦, 𝑧) ⇒ 𝑐𝑧 > 𝑏𝑦 > 𝑎𝑥 > 𝑒
2

3
𝑛

 

(3) 𝑎 ≥ 2 And 𝑛 = min (𝑥, 𝑦, 𝑧) ≥ 3 ⇒ 𝑐𝑧 > 𝑏𝑦 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3)  

Proof: (of lemma3) 

(1)*Suppose contrarily that: 𝑎𝑥 ≤ 𝑒2 

*We have: 𝑎 ≥ 2 and 𝑛 = min (𝑥, 𝑦, 𝑧) ≥ 3 ⇒ 𝑥 ≥ 3 and 𝑎 ≥ 2 ⇒ 2 ≤ 𝑎 ≤ 𝑒
2

𝑥 ≤ 𝑒
2

3 = 1.94 

*This being impossible, the result follows. 

(2)*Suppose contrarily that: 𝑎𝑥 ≤ 𝑒
2𝑛

3  

*We have: 𝑎 ≥ 2 and 𝑛 = min (𝑥, 𝑦, 𝑧) ⇒
𝑛

𝑥
≤ 1 and 𝑎 ≥ 2 ⇒ 2 ≤ 𝑎 ≤ 𝑒

2𝑛

3𝑥 ≤ 𝑒
2

3 = 1.94 … 

*This being impossible, the result follows. 

(3)*By lemma2, we can distinguish two cases: 

First case: 𝑎 ≥ 3 

*Suppose contrarily that: 𝑎𝑥 ≤ 𝑒
4𝑛(𝑛+3)

3(2𝑛+3)  

*We have: 𝑢(𝑡) =
𝑡+3

2𝑡+3
  ⇒ 𝑢′(𝑡) =

(2𝑡+3)−2(𝑡+3)

(2𝑡+3)2 =
3−6

(2𝑡+3)2 = −
3

(2𝑡+3)2 < 0 

*So: 𝑛 ≥ 3 ⇒
𝑛+3

2𝑛+3
≤

3+3

2×3+3
=

6

9
=

2

3
⇒

4(𝑛+3)

3(2𝑛+3)
≤

4×2

3×3
=

8

9
 

*Then: 
𝑛

𝑥
≤ 1 and 𝑎 ≥ 3 ⇒ 3 ≤ 𝑎 ≤ 𝑒

𝑛

𝑥
(

4(𝑛+3)

3(2𝑛+3)
)

≤ 𝑒
8

9=2.43… 

*This being impossible we have well: 𝑎𝑥 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3) 

*So, by lemma1: 𝑏𝑦 > 𝑎𝑥 ⇒ 𝑏𝑦 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3) 

Second case: 𝑏 ≥ 3 

*Suppose contrarily that: 𝑏𝑦 ≤ 𝑒
4𝑛(𝑛+3)

3(2𝑛+3)  

*We have: 𝑢(𝑡) =
𝑡+3

2𝑡+3
  ⇒ 𝑢′(𝑡) =

(2𝑡+3)−2(𝑡+3)

(2𝑡+3)2 =
3−6

(2𝑡+3)2 = −
3

(2𝑡+3)2 < 0 

*So: 𝑛 ≥ 3 ⇒
𝑛+3

2𝑛+3
≤

3+3

2×3+3
=

6

9
=

2

3
⇒

4(𝑛+3)

3(2𝑛+3)
≤

4×2

3×3
=

8

9
 

*Then: 
𝑛

𝑦
≤ 1 and 𝑏 ≥ 3 ⇒ 3 ≤ 𝑏 ≤ 𝑒

𝑛

𝑦
(

4(𝑛+3)

3(2𝑛+3)
)

≤ 𝑒
8

9=2.43… 

*This being impossible we have well: 𝑏𝑦 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3) 

*So: 𝑏𝑦 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3)  

Conclusion: in any case we have: 𝑏𝑦 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3) 

Lemma4 : (1) The function 𝑓(𝑡) = 𝑡−
1

2 ln(𝑡) (𝑡 > 0) is strictly decreasing for 𝑡 > 𝑒2 

(2) 𝑓(𝑎𝑥) = (𝑎𝑥)−
1

2 ln(𝑎𝑥) > 𝑓(𝑏𝑦) = (𝑏𝑦)−
1

2 ln(𝑏𝑦) > 𝑓(𝑐𝑧) = (𝑐𝑧)−
1

2 ln(𝑐𝑧) 

(3) 𝑔(𝑡) = 𝑡−
3

2𝑛 ln(𝑡) (𝑡 > 0) is strictly decreasing for 𝑡 > 𝑒
2𝑛

3  

(4) 𝑔(𝑏𝑦) = (𝑏𝑦)−
3

2𝑛 ln(𝑏𝑦) > 𝑔(𝑐𝑧) = (𝑐𝑧)−
3

2𝑛 ln(𝑐𝑧) 

(5) The function ℎ(𝑡) = 𝑡−
3

2𝑛
−1 ln (𝑒𝑡−

3

2𝑛) (𝑡 > 0) is strictly increasing for 𝑡 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3)  

(6)ℎ(𝑎𝑥) − ℎ(𝑎𝑥 + 𝑏𝑦) = ℎ(𝑎𝑥) − ℎ(𝑐𝑧) = (𝑎𝑥)−
3

2𝑛
−1 ln (𝑒(𝑎𝑥)−

3

2𝑛) − (𝑐𝑧)−
3

2𝑛
−1 ln (𝑒(𝑐𝑧)−

3

2𝑛) < 0   

Proof : (of lemma4) 

(1)*We have : 𝑓′(𝑡) = 𝑡−
3

2 −
1

2
𝑡−

3

2 ln(𝑡) = 𝑡−
3

2 ln (𝑒𝑡−
1

2) 
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*𝑓 strictly decreasing⇔ ln (𝑒𝑡−
1

2) < 0 ⇔ 𝑒𝑡−
1

2 < 1 ⇔ 𝑒 < 𝑡
1

2 ⇔ 𝑡 > 𝑒2 

(2) By the assertion (1) of lemma2 and the assertion (1) of lemma3, we have : 

𝑒2 < 𝑎𝑥 < 𝑏𝑦 < 𝑐𝑧 ⇒ 𝑓(𝑎𝑥) = (𝑎𝑥)−
1

2 ln(𝑎𝑥) > 𝑓(𝑏𝑦) = (𝑏𝑦)−
1

2 ln(𝑏𝑦) > 𝑓(𝑐𝑧) = (𝑐𝑧)−
1

2 ln(𝑐𝑧)  

(3)*We have : 𝑔′(𝑡) = 𝑡−
3

2𝑛
−1ln (𝑒𝑡−

3

2𝑛) 

* 𝑔 strictly decreasing⇔ ln (𝑒𝑡−
3

2𝑛) < 0 ⇔ 𝑒𝑡−
3

2𝑛 < 1 ⇔ 𝑒 < 𝑡
3

2𝑛 ⇔ 𝑡 > 𝑒
2𝑛

3  

(4)By the assertion (2) of lemma2 and the assertion (3) of lemma3, we have : 

𝑐𝑧 > 𝑏𝑦 > 𝑒
2𝑛

3  ⇒ 𝑔(𝑏𝑦) = (𝑏𝑦)−
3

2𝑛 ln(𝑏𝑦) > 𝑔(𝑐𝑧) = (𝑐𝑧)−
3

2𝑛 ln(𝑐𝑧) 

(5)*We have :ℎ′(𝑡) = − (
3

2𝑛
+ 1) 𝑡−

3

2𝑛
−2 ln (𝑒𝑡−

3

2𝑛) + 𝑡−
3

2𝑛
−1(

−
3

2𝑛
𝑒𝑡

−
3

2𝑛−1

𝑒𝑡
−

3
2𝑛

) 

=−𝑡−
3

2𝑛
−2 ((

3

2𝑛
+ 1) ln (𝑒𝑡−

3

2𝑛) +
3

2𝑛
) = −𝑡−

3

2𝑛
−2 ((

3

2𝑛
+ 1) ln (𝑒𝑡−

3

2𝑛) +
3

2𝑛
ln (𝑒)) 

= −𝑡−
3

2𝑛
−2 (ln (𝑒

3

2𝑛
+1𝑡−

3

2𝑛
(

3

2𝑛
+1)) + ln (𝑒

3

2𝑛)) = −𝑡−
3

2𝑛
−2 (ln (𝑒

3

2𝑛
+1𝑒

3

2𝑛𝑡−
3

2𝑛
(

3

2𝑛
+1)))  

== −𝑡−
3

2𝑛
−2 (ln (𝑒

3

𝑛
+1𝑡−

3

2𝑛
(

3

2𝑛
+1))) 

*We have :ℎ is strictly increasing⇔ ln (𝑒
3

𝑛
+1𝑡−

3

2𝑛
(

3

2𝑛
+1)) < 0 ⇔ 𝑒

3

𝑛
+1𝑡−

3

2𝑛
(

3

2𝑛
+1) < 1 

⇔ 𝑒
3

𝑛
+1 < 𝑡

3

2𝑛
(

3

2𝑛
+1) ⇔ 𝑡 > 𝑒

3
𝑛+1

3
2𝑛(

3
2𝑛+1) = 𝑒

4𝑛(𝑛+3)

3(2𝑛+3)  
(6) By the assertion (3) of lemma2, we have : 

𝑐𝑧 > 𝑏𝑦 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3) ⇒ ℎ(𝑏𝑦) − ℎ(𝑐𝑧) = (𝑏𝑦)−
3

2𝑛
−1 ln (𝑒(𝑏𝑦)−

3

2𝑛) − (𝑐𝑧)−
3

2𝑛
−1 ln (𝑒(𝑐𝑧)−

3

2𝑛) < 0    

Lemma5 : We have :∃𝜃 ∈]0,
1

2
[ such that : 

1

2
(

𝑎𝑥

𝑐𝑧 )𝜃 ln (𝑎𝑥)

ln (𝑐𝑧)
+ 𝜃(

𝑏𝑦

𝑐𝑧 )𝜃 ln (𝑏𝑦)

ln (𝑐𝑧)
=

1

2
 

Proof : (of lemma5) 

*Consider, on [0,
1

2
], the continuous function : 

𝜑(𝑡) =
1

2
(
𝑎𝑥

𝑐𝑧
)𝑡

ln (𝑎𝑥)

ln (𝑐𝑧)
+ 𝑡(

𝑏𝑦

𝑐𝑧
)𝑡

ln (𝑏𝑦)

ln (𝑐𝑧)
−

1

2
 

*We have : 

** by lemma1 : 𝑎𝑥 < 𝑐𝑧 ⇒ 𝜑(0) =
1

2
(

ln(𝑎𝑥)

ln(𝑐𝑧)
− 1) =

ln (
𝑎𝑥

𝑐𝑧 )

2ln (𝑐𝑧)
< 0 

**by the assertion (2) of lemma4, we have :  

𝜑 (
1

2
) =

1

2
((

𝑎𝑥

𝑐𝑧 )

1

2 ln(𝑎𝑥)

ln(𝑐𝑧)
+ (

𝑏𝑦

𝑐𝑧 )

1

2 ln(𝑏𝑦)

ln(𝑐𝑧)
− 1)  

=
1

2
((

𝑎𝑥

𝑐𝑧 )
1−

1

2 ln(𝑎𝑥)

ln(𝑐𝑧)
+ (

𝑏𝑦

𝑐𝑧 )
1−

1

2 ln(𝑏𝑦)

ln(𝑐𝑧)
− (

𝑎𝑥

𝑐𝑧 +
𝑏𝑦

𝑐𝑧 )) 

=
1

2
(

𝑎𝑥

𝑐𝑧 ((
𝑎𝑥

𝑐𝑧 )
−

1

2 ln(𝑎𝑥)

ln(𝑐𝑧)
− 1) +

𝑏𝑦

𝑐𝑧 ((
𝑏𝑦

𝑐𝑧 )
−

1

2 ln(𝑏𝑦)

ln(𝑐𝑧)
− 1)) 

=
1

2
(

𝑎𝑥

𝑐𝑧 (
(𝑎𝑥)−

1
2ln(𝑎𝑥)−(𝑐𝑧)−

1
2ln(𝑐𝑧) 

(𝑐𝑧)−
1
2 ln(𝑐𝑧)

) +
𝑏𝑦

𝑐𝑧 (
(𝑏𝑦)−

1
2ln(𝑏𝑦)−(𝑐𝑧)−

1
2ln(𝑐𝑧) 

(𝑐𝑧)−
1
2 ln(𝑐𝑧)

) > 0 

*So, by the intermediate value theorem (proposition23), we have : 

𝜑(0)𝜑 (
1

2
) < 0 ⇒ ∃𝜃 ∈]0,

1

2
[ Such that : 𝜑(𝜃) = 0 =

1

2
(

𝑎𝑥

𝑐𝑧)𝜃 ln (𝑎𝑥)

ln (𝑐𝑧)
+ 𝜃(

𝑏𝑦

𝑐𝑧 )𝜃 ln (𝑏𝑦)

ln (𝑐𝑧)
−

1

2
 

*The result follows. 

Lemma6 :  𝜃 given by lemma5, we have : 

(1)The function 𝜓(𝑡) = 2𝜃𝑡−
3

2𝑛 ln(𝑡) − (𝑡 + 𝑎𝑥)−
3

2𝑛ln (𝑡 + 𝑎𝑥) is strictly decreasing for  𝑡 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3)   

(2)∀𝑡 >
4(𝑛+3)

3(2𝑛+3)
   𝜓(𝑡) > 0   

(3) 2𝜃(𝑏𝑦)−
3

2𝑛 ln(𝑏𝑦) − (𝑐𝑧)−
3

2𝑛 ln(𝑐𝑧) > 0 

Proof : (of lemma6) 

(1)*We have, by lemma5 : 
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𝜃 ∈]0,
1

2
[⇒ 0 < 2𝜃 < 1 ⇒ 𝜓′(𝑡) = 2𝜃𝑡−

3

2𝑛
−1 ln (𝑒𝑡−

3

2𝑛) − (𝑡 + 𝑎𝑥)−
3

2𝑛
−1 ln (𝑒(𝑡 + 𝑎𝑥)−

3

2𝑛)  

< 𝑡−
3

2𝑛
−1 ln (𝑒𝑡−

3

2𝑛) − (𝑡 + 𝑎𝑥)−
3

2𝑛
−1 ln (𝑒(𝑡 + 𝑎𝑥)−

3

2𝑛)  

*So, by the assertion (5) of lemma4 : 𝜓′(𝑡) < 0 for 𝑡 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3)    

(2) So, By the L’Hôpital rule, we have :  ∀𝑡 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3)    

 𝜓(𝑡) ≥ 𝜓(+∞) = 2𝜃 lim
𝑡→+∞

ln (𝑡)

𝑡
3

2𝑛

− lim
𝑡→+∞

ln (𝑡+𝑎𝑥)

(𝑡+𝑎𝑥)
3

2𝑛

 

=2𝜃 lim
𝑡→+∞

(ln(t))′

(𝑡
3

2𝑛)′
− lim

𝑡→+∞

(ln(t+𝑎x))′

((𝑡+𝑎𝑥)
3

2𝑛)′
 (Because : lim

𝑡→+∞

ln (𝑡)

𝑡
3

2𝑛

= 𝐼𝐹
+∞

+∞
 𝑎𝑛𝑑 lim

𝑡→+∞

ln (𝑡+𝑎𝑥)

(𝑡+𝑎𝑥)
3

2𝑛

= 𝐼𝐹
+∞

+∞
) 

=2𝜃 lim
𝑡→+∞

1

3

2𝑛
𝑡×𝑡

3
2𝑛−1

− lim
𝑡→+∞

1

3

2𝑛
(𝑡+𝑎𝑥)×(𝑡+𝑎𝑥)

3
2𝑛−1

 

=2𝜃 lim
𝑡→+∞

1

3

2𝑛
𝑡

3
2𝑛

− lim
𝑡→+∞

1

3

2𝑛
(𝑡+𝑎𝑥)

3
2𝑛

= 2𝜃 × 0 − 0 = 0 

(3)*By the assertion (3) of lemma3, we have : 𝑏𝑦 > 𝑒
4𝑛(𝑛+3)

3(2𝑛+3)  

*So, by the assertion (2) of lemma6 ; we have : 

𝜓(𝑏𝑦) = 2𝜃𝑡−
3

2𝑛 ln(𝑏𝑦) − (𝑎𝑥 + 𝑏𝑦)−
3

2𝑛 ln(𝑎𝑥 + 𝑏𝑦) = 2𝜃(𝑏𝑦)−
3

2𝑛 ln(𝑏𝑦) − (𝑐𝑧)−
3

2𝑛 ln(𝑐𝑧) > 0   

Lemma7:  𝜃 given by lemma 5, we have: 𝑛 <
3

2

1−𝜃
 

Proof: (of lemma7) 

*Suppose contrarily that: 𝑛 ≥
3

2

1−𝜃
 i. e. 𝜃 ≤

𝑛−
3

2

𝑛
 

*So: by lemma1, the assertion (4) of lemma4,   lemma5, the assertion (3) of lemma6, and the hypothesis: 
𝑎𝑥

𝑐𝑧 +
𝑏𝑦

𝑐𝑧 = 1, we have successively: 

0 =
1

2
(

𝑎𝑥

𝑐𝑧 )𝜃 ln (𝑎𝑥)

ln (𝑐𝑧)
+ 𝜃(

𝑏𝑦

𝑐𝑧 )𝜃 ln (𝑏𝑦)

ln (𝑐𝑧)
−

1

2
≥

1

2
(

𝑎𝑥

𝑐𝑧 )1−
3

2𝑛
ln (𝑎𝑥)

ln (𝑐𝑧)
+ 𝜃(

𝑏𝑦

𝑐𝑧 )1−
3

2𝑛
ln (𝑏𝑦)

ln (𝑐𝑧)
−

1

2
(

𝑎𝑥+𝑏𝑦

𝑐𝑧 )  

=
1

2

𝑎𝑥

𝑐𝑧 ((
𝑎𝑥

𝑐𝑧)
−

3

2𝑛 ln(𝑎𝑥)

ln(𝑐𝑧)
− 1) + (

𝑏𝑦

𝑐𝑧 ) (𝜃 (
𝑏𝑦

𝑐𝑧 )
−

3

2𝑛 ln(𝑏𝑦)

ln(𝑐𝑧)
−

1

2
) 

=
1

2

𝑎𝑥

𝑐𝑧 (
(𝑎𝑥)

−
3

2𝑛 ln(𝑎𝑥)−(𝑐𝑧)
−

3
2𝑛 ln(𝑐𝑧)

(𝑐𝑧)
−

3
2𝑛 ln(𝑐𝑧)

) +
𝑏𝑦

𝑐𝑧 (
2𝜃(𝑏𝑦)

−
3

2𝑛 ln(𝑏𝑦)−(𝑐𝑧)
−

3
2𝑛 ln(𝑐𝑧)

2(𝑐𝑧)
−

3
2𝑛 ln(𝑐𝑧)

) > 0 

*So, we have obtained the assertion “0>0” 

*This being impossible, the result follows. 

Lemma8: (the wanted result) 𝑛 = 2. 
Proof: (of lemma8) 

*The function: 𝑢(𝑡) =
1

1−𝑡
 is strictly increasing on [0,

1

2
]because 𝑢′(𝑡) =

1

(1−𝑡)2 > 0. 

*So, by the lemmas 5, 7 and our absurd reasoning hypothesis “𝑛 ≥ 3", we have successively: 

𝜃 ∈]0,
1

2
[⇒ 3 ≤ 𝑛 <

3
2

1 − 𝜃
<

3
2

1 −
1
2

= 3 

*That is, we have obtained the assertion “3<3”. 

*This being impossible, our hypothesis “ ≥ 3" is false and so we have: 𝑛 = 2. 

Conclusion: Lemma8 finishes the proof of theorem1. 

Corollary:  (1)𝑛 = min(𝑥, 𝑦, 𝑧) > 2 ⇒ ∀𝑎, 𝑏, 𝑐 ∈ ℕ∗(𝑎𝑥 + 𝑏𝑦 ≠ 𝑐𝑧 𝑜𝑟 gcd (𝑎, 𝑏, 𝑐) ≠ 1) 

(2) i.e. 𝑛 = min(𝑥, 𝑦, 𝑧) > 2 and ∃𝑎, 𝑏, 𝑐 ∈ ℕ∗ such that 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 ⇒ gcd (𝑎, 𝑏, 𝑐) ≠ 1 

Proof: (of the corollary) 

(1)*The result is obtained by taking the contrapositive proposition of the proposition given in theorem1, using 

proposition 18. 

(2)*By proposition18: 

The assertion (1) ⇔ 𝑛𝑜𝑛(𝑛 > 2)𝑜𝑟( ∀𝑎, 𝑏, 𝑐 ∈ ℕ∗(𝑎𝑥 + 𝑏𝑦 ≠ 𝑐𝑧 𝑜𝑟 gcd(𝑎, 𝑏, 𝑐) ≠ 1)) 

⇒ 𝑛𝑜𝑛(𝑛 > 2)𝑜𝑟 (∀𝑎, 𝑏, 𝑐 ∈ ℕ∗𝑎𝑥 + 𝑏𝑦 ≠ 𝑐𝑧) 𝑜𝑟 (∃𝑎, 𝑏, 𝑐 ∈ ℕ∗gcd (𝑎, 𝑏, 𝑐) ≠ 1)  

⇔ 𝑛𝑜𝑛(𝑛 > 2)𝑜𝑟 𝑛𝑜𝑛(∃𝑎, 𝑏, 𝑐 ∈ ℕ∗𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧) 𝑜𝑟 (∃𝑎, 𝑏, 𝑐 ∈ ℕ∗ gcd(𝑎, 𝑏, 𝑐) ≠ 1)  

⇒ 𝑛𝑜𝑛(𝑛 > 2 𝑎𝑛𝑑 ∃𝑎, 𝑏, 𝑐 ∈ ℕ∗𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧)𝑜𝑟 gcd (𝑎, 𝑏, 𝑐) ≠ 1  

http://www.gjaets.com/
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⇔ (𝑛 = min(𝑥, 𝑦, 𝑧) > 2)𝑎𝑛𝑑 (∃𝑎, 𝑏, 𝑐 ∈ ℕ∗ such that 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧) ⇒ gcd (𝑎, 𝑏, 𝑐) ≠ 1  
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