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ABSTRACT 
I confirm, in the present short note, the famous abc-conjecture, remained open since 1985 and described by Dorian 

Goldfeld in 1996  (See [43]) to be « the most important unsolved problem in Diophantine analysis », by using 

elementary tools of mathematics such as the intermediate value theorem, the L’Hôpital rule and the growth 

properties of some elementary functions. Various attempts to prove the conjecture have been made, but none are 

currently accepted by the main Stream mathematical community such as the very long-in 600 pages- proof [71] 

by the Japanese Mathematician Schinichi Mochizuki (Born in March 29, 1969)-published in 8/2012- declared- by 

Peter Sholze and Jacob Stix in september 2018- that it « is, in state, not receivable » (See [91]). Some important 

consequences, such as the Fermat last theorem, the Beal conjecture, the Roth theorem, the Fermat-Catalan 

conjecture, the Wieferich-Silverman theorem, the Erdos-Woods conjecture…, are deduced. 
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INTRODUCTION  
Definition1: We call the abc-conjecture (or the Oesterlé-Masser conjecture)  the following assertion: « ∀𝜖 >

0∃𝐾𝜖 > 0 such that∀ (𝑎, 𝑏, 𝑐) ∈ 𝐴 = {(𝑝, 𝑞, 𝑟) ∈ ℤ∗
3, gcd(𝑝, 𝑞, 𝑟) = 1 and 𝑝 + 𝑞 = 𝑟}, we have: 

max (|𝑎|, |𝑏|, |𝑐|) ≤ 𝐾𝜖(𝑟(𝑎𝑏𝑐))
1+𝜖 », where: gcd(𝑝, 𝑟, 𝑞)denotes the greatest Common divisor of the integers 

|𝑝|, |𝑞|, |𝑟| and   𝑟(𝑛) = ∏ 𝑝𝑖
𝑚(𝑛)
𝑖=1  denotes the radical of 𝑛, if |𝑛| = ∏ 𝑝𝑖

𝛼𝑖𝑚(𝑛)
𝑖=1  is the decomposition of the  

integer 𝑛, according to the Fundamental Arithmetical theorem (𝑝𝑖  are prime integers (Recall that 𝑎 positive integer 

p is prime if its set of divisors is 𝐷 (𝑝)  =  {1, 𝑝})). An element (𝑎, 𝑏, 𝑐) of the set 𝐴 is called an abc-triple. If 

gcd(𝑎, 𝑏, 𝑐) = 1: we say that the integers 𝑎, 𝑏 and 𝑐 are coprime. Note that the name “abc-conjecture” derives 

from the use of letters 𝑎, 𝑏 and 𝑐 in the relation:  

       “ ∀𝜖 > 0∃𝐾𝜖 > 0 such that ∀ (𝑎, 𝑏, 𝑐) ∈ ℤ∗
3 {

𝑎 + 𝑏 = 𝑐
gcd(𝑎, 𝑏, 𝑐) = 1

⇒ max (|𝑎|, |𝑏|, |𝑐|) ≤ 𝐾𝜖(𝑟(𝑎𝑏𝑐))
1+𝜖
" 

Remark: 1) the hypothesis « 𝜖 > 0 » is necessary in the statement of the abc-conjecture. Indeed, if 𝜖 = 0: 

* considering 𝑥𝑛 = 32
𝑛
, 𝑦𝑛 = −1 and 𝑧𝑛 = 3

2𝑛 − 1, we have:{
𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛

gcd(𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) = 1
.  

*But 2𝑛+2 dividing 𝑧𝑛 (for: 𝑛 ∈ ℕ∗), we have: 

∗∗ 𝑟(𝑥𝑛𝑦𝑛𝑧𝑛) = 𝑟 (3
2𝑛2𝑛+2

𝑧𝑛

2𝑛+2
) = 𝑟(32

𝑛
)𝑟(2𝑛+2)𝑟 (

𝑧𝑛

2𝑛+2
) = 3.2𝑟 (

𝑧𝑛

2𝑛+2
) ≤ 2.3.

𝑧𝑛

2𝑛+2
. 

**max (|𝑥𝑛|, |𝑦𝑛|, |𝑧𝑛|) ≥ |𝑧𝑛| ≥
2𝑛+1𝑟(𝑥𝑛𝑦𝑛𝑧𝑛)

3
= 2𝑛−1𝑟(𝑥𝑛𝑦𝑛𝑧𝑛).

4

3
> 2𝑛−1𝑟(𝑥𝑛𝑦𝑛𝑧𝑛) . 

* So: (𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) is an abc-triple exemple for which the quantity:
max(|𝑥𝑛|,|𝑦𝑛|,|𝑧𝑛|)

𝑟(𝑥𝑛𝑦𝑛𝑧𝑛)
 , being > 2𝑛−1, 

takes arbtrairily great values. 

2) The polynomial version of the abc-conjecture is the following theorem called Mason-Stothers theorem: 
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Theorem :( Mason-Stothers theorem) (Proved by W. Stothers in 1981 [105] and elementarily by R .C. Mason in 

1984 [64]): if 𝑛𝑜(𝑑) denotes the number of distinct roots of the polynomial d, then for any polynomials 

𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡); we have:   {
gcd(𝑎, 𝑏, 𝑐) = 1
𝑎 + 𝑏 = 𝑐

 ⇒ max(deg(𝑎), deg (𝑏), deg (𝑐))) ≤ 𝑛𝑜(𝑎𝑏𝑐) − 1.  

3) An easy Corollary of the Mason-Stothers theorem is the below polynomial Fermat theorem: 

Theorem : The equation : (𝑎(𝑡))𝑛 + (𝑏(𝑡))𝑛 = (𝑐(𝑡))𝑛, with 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) non constant polynomials, has no 

solution for 𝑛 ≥ 3. 

History: This conjecture was first proposed by David Masser in 1985 [66] and Joseph Oesterlé in 1988[81]. It 

has remained open since 1985 although many attempts of eminent mathematicians.  The actual state of the ABC 

conjecture can be summered as below:  

1) 2001/Stewart and Yu’s inequality:  In 2001, Stewart and Yu showed [102], [103] the weaker form of the abc- 

conjectures, saying that: 

   ∀ϵ > 0∃𝐾(ϵ) > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀(𝑎, 𝑏, 𝑐) integers {
a + b = c

gcd(a, b, c) = 1
⇒ max (ln(|𝑎|) , ln(|𝑏|) , ln(|𝑐|)) ≤ 𝐾(𝜖)(𝑟(𝑎𝑏𝑐))

1

3
+𝜖

 

2) 2006/ABC@Home project:”In 2006, the Mathematics Department of Leiden University in the Netherlands, 

together with the Dutch Kennislink science institute, launched the ABC@Home project, a grid computing system, 

which aims to discover additional triples a, b, c with r(abc) < c. As of May 2014, the ABC@Home had found 23.8 

million triples” (See [1], [120]). 

3) 2007/Lucien Szpiro proof:” In 2007, Lucien Szpiro proposed a proof of the abc-conjecture, but it was found 

to be incorrect shortly afterwards” (See [120] and its references). 

4) 2012/Shinichi Mochizuki proofs: “In August 2012 Shinichi Mochizuki claimed a proof of the abc conjecture. 

He released a series of four preprints developing a new theory called inter-universal Teichmüller theory (IUTT) 

which is then applied to prove several famous conjectures in number theory, including the abc-conjecture but also 

Szpiro's conjecture, the hyperbolic Vojta's conjecture. The papers have not been accepted by the mathematical 

community as providing a proof of abc-conjecture. This is not only because of their difficulty to understand and 

length, but also because at least one specific point in the argument has been identified as a gap by some other 

experts. Though a few mathematicians have vouched for the correctness of the proof, and have attempted to 

communicate their understanding via workshops on IUTT, they have failed to convince the number theory 

community at large” (See [71], [120]). 

5) 2016/Joseph Sheppard judgment: In 2016, Joseph Sheppard wrote [93]: “we are far from proving this 

conjecture (The abc-conjecture). The best we can do is Stewart and Yu’s 2001[103] (see also [102]) result…” 

[120].  

6) March-2018/Peter Scholze and Jakob Stix judgment:” In March 2018, Peter Scholze and Jakob Stix visited 

Kyoto for discussions with Mochizuki. While they did not resolve the differences, they brought them into clearer 

focus. Scholze and Stix concluded that the gap was "so severe that … small modification will not rescue the proof 

strategy"; Mochizuki claimed that: “they misunderstood vital aspects of the theory and made invalid 

simplifications” (See [91], [120]).  

7) July-2018/Mohamed Sghiar proof: On July 2018, Mohamed Sghiar (Burgundy university) published at 

“IOSR JOURNAL OF MATHEMATICS” a French paper entitled:” La preuve de la conjecture abc”. In any case 

my approach here is completely different of that of M. Sghiar (see [92]).  
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8) 2020/Kiran Kedlaya, Edward Frenkel and Nature judgment: “On April 3, 2020, two Japanese 

mathematicians announced that Mochizuki's claimed proof would be published in Publications of the Research 

Institute for Mathematical Sciences (RIMS), a journal of which Mochizuki is chief editor. The announcement was 

received with skepticism by Kiran Kedlaya and Edward Frenkel, as well as being described by Nature as: "unlikely 

to move many researchers over to Mochizuki's camp."” (See [120]). 

The note: The present short note gives a proof of the abc-conjecture using elementary tools of mathematics and 

some methods developed in my papers [41], [42] confirming the Beal conjecture, published by the GJAETS . The 

proof is based only on the intermediate value theorem, the l’Hôpital rule and the growth properties of some 

elementary functions. Some important consequences are deduced such as the Fermat last theorem, the Beal 

conjecture, the Fermat -Catalan conjecture, the Roth theorem, the Wieferich-Silverman theorem, the Erdos-Woods 

conjecture…   

Results: our main result is:  

Theorem: (confirming the abc-conjecture).  

          ∀𝜖 > 0∃𝐾𝜖 > 0 such as ∀𝑎, 𝑏, 𝑐 ∈ ℤ∗ ∶ {
𝑎 + 𝑏 = 𝑐

gcd(𝑎, 𝑏, 𝑐) = 1
⇒

max (|𝑎|,|𝑏|,|𝑐|)

𝑟(𝑎𝑏𝑐)1+𝜖
≤ 𝐾𝜖  

Methods: I proceed by the absurd reasoning using the intermediate value theorem, the l’Hôpital rule and the 

growth properties of some elementary functions. 

Organization of the paper: The paper is organized as follows. The §1 is an introduction giving the necessary 

definition and some history. The § 2 gives the ingredients of the proof. The §3 gives the proof of the abc- 

conjecture. The §4 gives some consequences of the abc-conjecture. The §5 gives the references of the paper for 

further reading. 

THE INGREDIENTS OF THE PROOF OF THE abc-CONJECTURE 
We will need the below definitions and results for the proofs of our main results. 

Definition2:  (notion of division and divisor [125]) let 𝑦, 𝑧 ∈ ℤ, we say that 𝑦 divides 𝑧  if: ∃𝑧 ∈ ℤ 𝑧 = 𝑥𝑦. We 

denote by 𝐷(𝑧) the set of divisors of 𝑧.   

Definition3: (notion of prime integer [126])   an integer 𝑝 ≥ 2, is called prime if its set of divisors is 𝐷(𝑝) =

{1, 𝑝}. 2 is the smallest prime integer. It is the sole even prime integer. We denote by ℙ the set of prime integers. 

Proposition1: (The prime integers are infinite (Euclid [31]))   ℙ is infinite. It is a strictly increasing sequence 

(𝑝𝑛)𝑛≥1 . 

Proposition2: (the arithmetical fundamental theorem [116]) we have: 

               ∀𝑛 ∈ ℤ, |𝑛| ≥ 2∃𝑚(𝑛) ∈ ℕ∗∃(𝛼𝑖)1≤𝑖≤𝑚(𝑛) ∈ ℕ
∗∃(𝑝𝑖)𝑖≤𝑚(𝑛) ⊂ ℙ Such that |𝑛| = ∏ 𝑝𝑖

𝛼𝑖𝑚(𝑛)
𝑖=1  

Definition4: (the radical of an integer [121]) If  |𝑛| = ∏ 𝑝𝑖
𝛼𝑖𝑚(𝑛)

𝑖=1 ≥ 2, (as in proposition2), for an integer 𝑛 ∈ ℤ, 

we call the radical of 𝑛: the positive integer: 𝑟(𝑛) = ∏ 𝑝𝑖
𝑚(𝑛)
𝑖=1 . It is evident, because 2 is the smallest prime integer, 

that the function radical is defined for |𝑛| ≥ 2.  It is evident, also, that the radical function is an even function 

on ℤ:  i.e. 𝑟(𝑛) = 𝑟(−𝑛). 

Definition5: (The greatest common divisor [127]) for 𝑥, 𝑦 ∈ ℤ , we denote by gcd(𝑥, 𝑦) the greatest positive 

common divisor of  𝑥, 𝑦. 
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Proposition3: (The Bezout theorem [117]) we have: 

(i) gcd(𝑥, 𝑦) = 1 ⇔ ∃𝑢, 𝑣 ∈ ℤ 𝑢𝑥 + 𝑣𝑦 = 1.  

(ii) gcd(𝑥, 𝑦) = 1 ⇔ ∀𝑛,𝑚 ∈ ℕ∗   gcd(𝑥𝑛, 𝑦𝑚) = 1. 

Definition6: (The lowest common multiple [128]) for 𝑥, 𝑦 ∈ ℤ , we denote by lcm(𝑥, 𝑦) the lowest positive 

common multiple of  𝑥, 𝑦. 

Proposition4: ([127], [128]) if 𝑥 = ∏ 𝑝𝑖
𝛼𝑖𝑛

𝑖=1  and 𝑦 = ∏ 𝑝𝑖
𝛽𝑖𝑛

𝑖=1  are the arithmetical fundamental decompositions, 

then: 

                                                gcd(𝑥, 𝑦) = ∏ 𝑝𝑖
min (𝛼𝑖,𝛽𝑖)𝑛

𝑖=1  And lcm(𝑥, 𝑦) = ∏ 𝑝𝑖
max (𝛼𝑖,𝛽𝑖)𝑛

𝑖=1  

Proposition5 :( Euler [32]-Gauss theorem [38] (See also [40], [68], [132])) we have: 

The Fermat equation 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 has no solutions in ℕ∗ for n = 3,4,5 ( i. e ∀𝑎, 𝑏, 𝑐 ∈ ℕ∗ we have: |𝑎𝑛 +

𝑏𝑛 − 𝑐𝑛| > 0 for:𝑛 = 3,4,5). 

Proposition 6:  (Intermediate value theorem [115]) let 𝑓: [𝑎, 𝑏] → ℝ  (With: 𝑎 < 𝑏) a continuous function. Then: 

𝑓(𝑎)𝑓(𝑏) < 0 ⇒ ∃𝑐 ∈]𝑎, 𝑏[  such that 𝑓(𝑐) = 0 

Proposition9: (the equivalent versions of the abc-conjecture) the below assertions are equivalent: 

(i)(A. Baker [3], [4]): For any positive abc-triples (𝑎, 𝑏, 𝑐) we have :  

(1) max (|𝑎|, |𝑏|, |𝑐|) ≤
6

5
𝑟(𝑎𝑏𝑐)

(ln(𝑟(𝑎𝑏𝑐)))𝜔

𝜔!
  Where 𝜔 = 𝜔(𝑎𝑏𝑐)denotes the number of distinct primes dividing 

𝑎𝑏𝑐. 

(2) In particular, we have: max (|𝑎|, |𝑏|, |𝑐|) < (𝑟(𝑎𝑏𝑐))
7

4. 

Remark : Laishram and Shorey showed in [56] that for 0 < 𝜖 ≤
3

4
 , there exists ω𝜖 depending only of 𝜖 such that 

when r = r (abc) ≥ 𝑟𝜖 =∏ 𝑝𝑝≤ω𝜖 , we have c < 𝐾𝜖𝑟
1+𝜖 where 𝐾𝜖 =

6

5√2𝜋max (ω,ωϵ)

 ≤
6

5√2𝜋ωϵ
 with ω = ω(r). Here are 

some values of 𝜖, ω𝜖 and 𝑟𝜖  : 

𝜖 3

4
 

7

12
 

6

11
 

1

2
 

34

71
 

5

12
 

1

3
 

ω𝜖 14 49 72 127 175 548 6460 

𝑟𝜖 𝑒37.1101 𝑒204.75 𝑒335.71 𝑒679.585 𝑒1004.763 𝑒3894.57  𝑒63727 

 

(ii)(Oesterlé [81]-Masser [66]): (a) Let 𝜖 > 0, the set OM= {(𝑎, 𝑏, 𝑐) ∈ ℕ∗
3 such that: {

𝑎 + 𝑏 = 𝑐
gcd(𝑎, 𝑏, 𝑐) = 1

𝑐 > 𝑟(𝑎𝑏𝑐)1+𝜖  
} is 

finite. 

(iii) ∀𝜖 > 0∃𝐾(𝜖) > 0 Such that for any positive abc-triple (𝑎, 𝑏, 𝑐) we have: 𝑟(𝑎𝑏𝑐) > 𝐾(𝜖)𝑐1−𝜖. 
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(iv)(The quality version of the abc-conjecture):  

∀𝜖 > 0∃ only finitely many positive abc − triples (a, b, c)such that q(a, b, c) =
ln (c)

ln (r(abc))
> 1 + 𝜖 

The quantity q(a, b, c) is called the quality of (a, b, c). 

(v)(Granville-Tucker [45])   The abc-conjecture says the lim sup of the set of all qualities (defined above) is 1. 

Remark: This implies the much weaker assertion that there is a finite upper bound for qualities. The conjecture 

that 2 is such an upper bound is sufficient for giving a very short proof of Fermat's Last Theorem.  

Proposition10: (Circular functions [129]) recall that:  

(i) cos(0) = 1 (ii) sin(0) = 0(iii) tan(𝑡) =
sin(𝑡)

cos(𝑡)
.   

(iv) The function:𝑡 → sin (𝑡) is strictly increasing on [0,
𝜋

2
] with (sin(𝑡))′ = cos (𝑡) ≥ 0 on [0,

𝜋

2
].  

(v) The function:𝑡 → 𝑐𝑜s (𝑡) is strictly decreasing on [0,
𝜋

2
] with (cos(𝑡))′ = −sin (𝑡) ≤ 0 on [0,𝜋]. 

(vi) The function: 𝑡 → tan (𝑡) is strictly increasing on [0,
𝜋

2
]  with (tan(𝑡))′ = 1 + (tan(𝑡))2=

1

(cos(𝑡))2
, so has a 

reciprocal function denoted “arctan”: [0, +∞[→ [0,
𝜋

2
]. 

Proposition11: (the contrapositive proposition [118]) (i) Let (P), (Q) two mathematical propositions. Noting by 

non (P) the negation of the proposition P (for example non (∃) = ∀, non (≤) =>), we call the contrapositive of 

the proposition “P⇒ 𝑄” (equivalent to the proposition “non (P) or Q”) the proposition “non (Q)⇒ 𝑛𝑜𝑛 (𝑃).  

(ii)An implication and its contrapositive are equivalent i.e. we have: (𝑃 ⇒ 𝑄) ⇔ (𝑛𝑜𝑛(𝑄) ⇒ 𝑛𝑜𝑛(𝑃)). 

(iii) Recall that: For any propositions (P) and (Q): ((𝑃 ⇒ 𝑄) true and 𝑃 true)⇒ 𝑄 true. 

(iv)The contradiction principle: for a proposition (𝑃): (𝑃)and 𝑛𝑜𝑛(𝑃) cannot be simultaneously true. This is the 

base of the absurd reasoning.  

Proposition12: (Catalan-Mihailescu theorem [69], [70]) the sole solution of the Diophantine equation 1 + 𝑏𝑦 =

𝑐𝑧 is (𝑏, 𝑐, 𝑦, 𝑧) = (2,3,3,2). 

Proposition 13: (The L’Hôpital rule [119]) we have: 

(i) If lim
𝑥→𝑎

𝑓(𝑥) = lim
𝑥→𝑎

𝑔(𝑥) = 0 or lim
𝑥→𝑎

𝑓(𝑥) = ±∞ , lim
𝑥→𝑎

𝑔(𝑥) = ±∞ (𝑎 can be infinite) the limit lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
 is called 

to be an indeterminate form (IF)
0

0
   or 

∞

∞
 respectively. 

(ii) If 𝑓, 𝑔 are differentiable on an interval ]𝑎, 𝑏[ except perhaps in a point 𝑐 ∈]𝑎, 𝑏[, 

if lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
  is the IF 

0

0
  and if ∀𝑥 ≠ 𝑐, 𝑔′(𝑥) ≠ 0, then: lim

𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→𝑐

𝑓′(𝑥)

𝑔′(𝑥)
  when the limits have a sense. 

(iii) If 𝑓′, 𝑔′ satisfies the same conditions as 𝑓 and 𝑔 the process is repeated. 

(iv)The result remain true in the case where lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
 is the IF 

∞

∞
.  
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Proposition 14: (The Bolzano-Weierstrass theorem [130]): any bounded sequence (𝑥𝑛)𝑛 ⊂]𝑎, 𝑏[ has a 

subsequence, denoted (for convenience) also by(𝑥𝑛)𝑛, converging to 𝑥 = lim
𝑛→+∞

𝑥𝑛 ∈ [𝑎, 𝑏]. 

Definition 5: (The integer part [123]) the integer part of a real number 𝑥 is the single integer number 𝐸(𝑥) such 

that:𝐸(𝑥) ≤ 𝑥 < 𝐸(𝑥) + 1 i.e.: 0 ≤ 𝑥 − 𝐸(𝑥) < 1. 

THE POROOF OF THE abc-CONJECTURE 
Theorem1: (Proving the abc-conjecture) we have: 

        ∀𝜖 > 0∃𝐾𝜖 > 0such that ∀𝑎, 𝑏, 𝑐 ∈ ℤ∗ such that ∶ {
𝑎 + 𝑏 = 𝑐

gcd(𝑎, 𝑏, 𝑐) = 1
 ⇒

max (|𝑎|,|𝑏|,|𝑐|)

𝑟(𝑎𝑏𝑐)1+𝜖
≤ 𝐾𝜖 

Proof :( of the theorem1) 

*The proof of the theorem will be deduced from the below lemmas. 

*Proceed by the absurd reasoning and suppose contrarily that: 

                                ∃𝜖 > 0∀𝐾 > 0 ∃𝑎, 𝑏, 𝑐 ∈ ℤ∗    Such that: {

𝑎 + 𝑏 = 𝑐
gcd(𝑎, 𝑏, 𝑐) = 1
(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
<

1

𝐾

 

Notation: *In particular: ∃𝜖 > 0 such that for 𝐾 = 10, ∃𝑎, 𝑏, 𝑐 ∈ ℤ∗ satisfying: {

𝑎 + 𝑏 = 𝑐
gcd(𝑎, 𝑏, 𝑐) = 1

(𝑟(𝑎𝑏𝑐))
1+𝜖

max(|𝑎|,|𝑏|,|𝑐|)
<

1

10

 .  

*putting:  𝑛 = 𝑛(𝑎, 𝑏, 𝑐) =
(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
.: we have, by the absurd hypothesis: 0 < 𝑛 <

1

10
< 1. 

Lemma1:  We can suppose  𝑎, 𝑏, 𝑐 ∈ ℕ∗. 

Proof: (of lemma1) 

*Let 𝑎, 𝑏, 𝑐 ∈ ℤ∗ such that:𝑐 = 𝑎 + 𝑏. 

*The possible signs of these integers are elements of the set:  𝑆 = { −1,+1}× {−1,+1} × {−1,+1}. 

*We have 𝑆 = {(−1,−1, −1), (−1,−1,1), (−1,1, −1), (−1,1,1), (1, −1, −1), (1, −1,1), (1,1, −1), (1,1,1)}. 

𝐅𝐢𝐫𝐬𝐭 𝐜𝐚𝐬𝐞: The case (sign (𝑎), sign(𝑏), sign(𝑐)) = (−1,−1,−1). 

We can replace: (𝑎, 𝑏, 𝑐) by (−𝑎,−𝑏,−𝑐) which are all positive and we can work with relation: – 𝑎 − 𝑏 = −𝑐. 

𝐒𝐞𝐜𝐨𝐧𝐝 𝐜𝐚𝐬𝐞: The case (sign (𝑎), sign(𝑏), sign(𝑐)) = (−1,−1,1). 

 *We have: 0 < 𝑐 = 𝑏 + 𝑎 < 0.  

*So this impossible case cannot occur. 

𝐓𝐡𝐢𝐫𝐝 𝐜𝐚𝐬𝐞: The case (sign (𝑎), sign(𝑏), sign(𝑐)) = (−1,1, −1). 

*We have: −𝑎′ + 𝑏 = −𝑐′, 𝑎′ = −𝑎 > 0, 𝑏 > 0, 𝑐′ = −𝑐 > 0.  

http://www.gjaets.com/


 
[Ghanim et al., 9(2): February, 2022]  ISSN 2349-0292 
  Impact Factor 3.802 

http: // www.gjaets.com/                 © Global Journal of Advance Engineering Technology and Sciences 

 [7] 

*We have:𝑎′ − 𝑏 = 𝑐′ or 𝑎′ = 𝑏 + 𝑐′. 

* We can replace (𝑎, 𝑏, 𝑐) by (−𝑐, 𝑏, −𝑎) which are all positive and we can work with the relation: – 𝑎 = 𝑏 − 𝑐.  

Fourth case The case (sign (𝑎), sign(𝑏), sign(𝑐)) = (−1,1,1). 

*We have: −𝑎′ + 𝑏 = 𝑐 , 𝑏 > 0, 𝑎′ = −𝑎 > 0 and 𝑐 > 0. 

*We have:𝑏 = 𝑎′ + 𝑐. 

*So we can replace: (𝑎, 𝑏, 𝑐) by (−𝑎, 𝑐, 𝑏), which are all positive, and we can work with the relation 𝑏 = −𝑎 + 𝑐. 

Fifth case: The case (sign (𝑎), sign(𝑏), sign(𝑐)) = (1,−1,−1). 

*We have: 𝑎 − 𝑏′ = −𝑐′ with 𝑎 > 0, 𝑏′ = −𝑏 > 0, 𝑐′ = −𝑐 > 0. 

*We have: 𝑎 = 𝑏′ + 𝑐′. 

* We can replace (𝑎, 𝑏, 𝑐) by (−𝑏,−𝑐, 𝑎), which are all positive, and we can work with the relation:𝑎 = −𝑏 − 𝑐.  

𝐒𝐢𝐱𝐭𝐡 𝐜𝐚𝐬𝐞: The case (sign (𝑎), sign(𝑏), sign(𝑐)) = (1, −1,1). 

*We have: 𝑎 − 𝑏′ = 𝑐 with 𝑎 > 0, 𝑏′ = −𝑏 > 0 , 𝑐 > 0. 

*We have: 𝑎 = 𝑏′ + 𝑐. 

*So, we can replace (𝑎, 𝑏, 𝑐) by (−𝑏, 𝑐, 𝑎) which are all positive and work with the relation:𝑎 = −𝑏 + 𝑐. 

𝐒𝐞𝐯𝐞𝐧𝐭𝐡 𝐜𝐚𝐬𝐞: The case (sign (𝑎), sign(𝑏), sign(𝑐)) = (1,1, −1). 

*We have: 0 < 𝑎 + 𝑏 = −𝑐′ < 0 with 𝑎 > 0, 𝑐′ = −𝑐 > 0 , 𝑏 > 0. 

*So, this impossible case cannot occur. 

Conclusion:  So we can work with the last eighth case: 𝑎 + 𝑏 = 𝑐, with: 𝑎 > 0, 𝑏 > 0, 𝑐 > 0. 

Lemma2:  

{
 
 

 
 

𝑎 + 𝑏 = 𝑐

𝑛 = 𝑛(𝑎, 𝑏, 𝑐) =
(𝑟(𝑎𝑏𝑐))

1+𝜖

max(|𝑎|,|𝑏|,|𝑐|)
<

1

10

gcd(𝑎, 𝑏, 𝑐) = 1
𝑎𝑏𝑐 ≠ 0

⇒we can suppose 1 ≤ 𝑎 < 𝑏 < 𝑐.  

Proof: (of lemma2) 

*We have:𝑎 = 𝑐 − 𝑏 > 0 ⇒ 𝑎 ≥ 1 and 𝑏 < 𝑐. 

*The order " ≤ " being total onℕ, we have:𝑏 ≥ 𝑎 or 𝑎 ≥ 𝑏. 

*So, we can suppose: 𝑎 ≤ 𝑏. 

*But: 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1 ⇒ 𝑎 ≠ 𝑏.Indeed, if not we have:𝑎 + 𝑏 = 2𝑎 = 𝑐, and so, we have:   

                                                            gcd(𝑎, 𝑏, 𝑐) = gcd(𝑎, 𝑎, 2𝑎) = 𝑎 = 1 

*That is: 𝑎 = 𝑏 = 1 and 𝑐 = 2 (We have well: gcd(𝑎, 𝑏, 𝑐) = 1. 
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*So: 
1

10
>

(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
=

(𝑟(1.1.2))1+𝜖

max (1,1,2)
=

21+𝜖

2
= 2𝜖 > 1 (because: 𝜖 > 0). 

*This being impossible, we can suppose: 𝑎 < 𝑏. 

Lemma3: We have:{

𝑎 + 𝑏 = 𝑐

𝑛 =
(𝑟(𝑎𝑏𝑐))

1+𝜖

max(|𝑎|,|𝑏|,|𝑐|)
<

1

10

gcd(𝑎, 𝑏, 𝑐) = 1

⇒  𝑎 ≥ 3 or 𝑏 ≥ 𝑎 + 3. 

Proof: (of lemma3) 

*Suppose contrarily that: 𝑏 < 𝑎 + 3 and 𝑎 < 3.  

∗ {
𝑐 = 𝑎 + 𝑏
𝑎 < 3

𝑏 < 𝑎 + 3
⇒  𝑐 = 𝑎 + 𝑏 < 𝑎 + 6 < 3 + 6 = 9. 

*So:{
𝑐 < 9

(𝑟(𝑎𝑏𝑐))1+𝜖 ≥ 1
 ⇒

1

10
> 𝑛 =

(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
=

(𝑟(𝑎𝑏𝑐))1+𝜖

c
≥

1

𝑐
>

1

9
. 

*Obtaining the impossible assertion “
1

9
< 𝑛 =

(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
<

1

10
", we have well: 𝑎 ≥ 3 or 𝑏 ≥ 𝑎 + 3. 

Remark: (i) In the case 1 ≤ 𝑎 < 3, we have: 𝑐 + 2 > 𝑐 > 𝑏 ≥ 𝑎 + 3 > 𝑎 + 2 > 3 with: 
𝑎+2

𝑐+2
+

𝑏

𝑐+2
= 1 

(because:𝑎 + 𝑏 = 𝑐).  So, we can work with the triple (𝑎 + 2, 𝑏, 𝑐 + 2). 

(ii) The condition 𝑏 ≥ 𝑎 + 3 is possible because of the inequality “𝑏 > 𝑎", assured by lemma2 (under the 

hypothesis: gcd(𝑎, 𝑏, 𝑐) = 1). 

Lemma4: For 𝑘 ≥ 2 and 𝑛 =
(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
  we have: 

(1)The function  𝑢(𝑡) = 𝑡−
𝜋

4
 (ln(t))𝑛

𝜋

4
(
𝜋

4
+
1

k
)
(𝑡 ≥ 1) is strictly decreasing for 𝑡 ≥ 𝑒𝑛(

π

4
+
1

k
). 

(2) (i) if : 𝒂 ≥ 𝟑,  we have: 𝑐 > 𝑏 > 𝑎 ≥ 3 > 𝑒n(
π

4
+
1

k
) ⇒ 𝑢(𝑎) > 𝑢(𝑏) > 𝑢(𝑐). 

(ii) if: 𝒂 < 3, we have:𝑐 + 2 > 𝑏 ≥ 𝑎 + 2 ≥ 3 > 𝑒𝑛(
𝜋

4
+
1

𝑘
) ⇒ 𝑢(𝑎 + 2) > 𝑢(𝑏) > 𝑢(𝑐 + 2). 

(3)If 𝑆(𝑘) = 𝜆(𝑘)𝑜𝑟 𝜃(𝑘) ∈]1 −
𝜋

4
, 1[ are as defined in the lemma 6 below, the function 𝑣(𝑡, 𝑆(𝑘)) =

𝑡−ntan(1−S(k))) (ln(t))𝑛
π

4
(1−S(k)+

1

k
)
(𝑡 ≥ 1) is strictly decreasing for 𝑡 ≥ 𝑒

𝜋
4(1−𝑆(𝑘)+

1
𝑘)

tan (1−𝑆(𝑘)) . 

(4)∃𝑝 ≥ 2 Such that: 3≥ 𝑒

𝜋
4(1−𝑆

(𝑝)+
1
𝑝)

tan(1−𝑆(𝑝)) . 

(5)𝑝 ≥ 2, being the number given by the assertion (4) of lemma4, we have: 

(i) *If 𝒂 ≥ 𝟑: 𝑐 > 𝑏 > 𝑎 ≥ 3 ≥ 𝑒

𝜋
4
(1−𝜆(𝑝)+

1
𝑝
)

tan(1−𝜆(𝑝)) ⇒ 𝑣(𝑎, 𝜆(𝑝)) > 𝑣(𝑏, 𝜆(𝑝)) > 𝑣(𝑐, 𝜆(𝑝)).  

(ii)*If 𝒂 < 3: 𝑐 + 2 > 𝑏 > 𝑎 + 2 ≥ 3 ≥ 𝑒

𝜋
4(1−𝜃(𝑝)+

1
𝑝)

tan(1−𝜃(𝑝)) ⇒ 𝑣(𝑎 + 2, 𝜃(𝑝)) > 𝑣(𝑏, 𝜃(𝑝)) > 𝑣(𝑐 + 2, 𝜃(𝑝)).  
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Proof: (of lemma4)  

(1) (2) (i), (ii) the result follows immediately from the assertion (1) of lemma4 because: 

*We have: 𝑢′(𝑡) = 𝑡−
𝜋

4
−1 (ln(t))𝑛

π

4
(
π

4
+
1

k
)−1 ln (t−

𝜋

4e𝑛
𝜋

4
(
𝜋

4
+
1

𝑘
)
). 

*We have:𝑢 Strictly decreasing⇔ ln (t−
𝜋

4e𝑛
𝜋

4
(
𝜋

4
+
1

𝑘
)) < 0 ⇔ t−

𝜋

4e𝑛
𝜋

4
(
𝜋

4
+
1

𝑘
) < 1. 

⇔ 𝑡
π

4 > 𝑒𝑛
π

4
(
π

4
+
1

k
)
 ⇔ 𝑡 > 𝑒𝑛(

π

4
+
1

k
).    

{
𝑘 ≥ 2

0 < 𝑛 <
1

10

⇒
1

10
(
π

4
+

1

2
) > 𝑛 (

𝜋

4
+

1

𝑘
) > 0 ⇒ 3 > 𝑒

1

10
(
π

4
+
1

2
)
= 1.1371… > 𝑒n

(
π

4
+
1

k
)
.  

(3)*We have: 

 𝑣′(𝑡, 𝑆(𝑘)) = 𝑡−ntan(1−𝑆(𝑘))−1(ln(t))𝑛
𝜋

4
(1−S(k)+

1

k
)−1 ln (t−𝑛 tan(1−S(k)))e𝑛

𝜋

4
(1−𝑆(𝑘)+

1

𝑘
)
).  

 *We have:𝑡 → 𝑣(𝑡, 𝑆(𝑘)) Strictly decreasing⇔ ln (t−𝑛(tan(1−S(k)))e𝑛
𝜋

4
(1−𝑆(𝑘)+

1

𝑘
)) < 0.  

⇔ t−𝑛(tan(1−S(k)))e𝑛
𝜋

4
(1−𝑆(𝑘)+

1

𝑘
) < 1 ⇔ t𝑛(tan(1−S(k))) > e𝑛

𝜋

4
(1−𝑆(𝑘)+

1

𝑘
)
 ⇔ 𝑡 > 𝑒

𝜋
4
(1−𝑆(𝑘)+

1
𝑘
)

tan(1−𝑆(𝑘))  .   

(4)*Suppose contrarily that: ∀𝑘 ≥ 2: 𝑒

𝜋
4(1−𝑆(𝑘)+

1
𝑘)

tan(1−𝑆(𝑘)) ≥ 3.  

*Tending: 𝑘 → +∞, we have, by the Bolzano-Weierstrass theorem: 

  lim
𝑘→+∞

𝑆(𝑘) = 𝑆 and
(1−𝑆)

tan(1−𝑆)
≤ 1 ⇒𝑒

𝜋

4  = 2.1932… ≥ 𝑒

𝜋
4
(1−𝑆)

tan(1−𝑆) ≥ 3.  

*This being impossible, the result follows. 

(5)The result follows, from the assertion (4) of lemma4. 

Lemma5: We have: 

(1) lim
𝑡→0

𝑡

tan (𝑡)
= 1. 

(2)∀𝑡 ∈ [0,
𝜋

2
]  𝜑(𝑡) = tan(𝑡) − 𝑡 ≥ 0. 

(3)∀𝑡 ∈ [0,
𝜋

4
]  𝜏(𝑡) = 𝑡 −

𝜋

4
tan (𝑡) ≥ 0. 

Proof: (of lemma 5) 

(1)By the L’Hôpital rule, we have: lim
𝑡→0

𝑡

tan (𝑡)
= 𝐹𝐼

0

0
= lim

𝑡→0

𝑡′

(tan(𝑡))′
= lim

𝑡→0

1

1+(tan(𝑡))2
=

1

1+(tan(0))2
=1. 

(2)We have: 𝜑′(𝑡) = 1 + (tan(𝑡))2 − 1 = (tan(𝑡))2 ≥ 0 ∀𝑡 ∈ [0,
𝜋

2
] ⇒ 𝜑 increasing on [0,

𝜋

2
] ⇒ ∀𝑡 ∈

[0,
𝜋

2
]𝜑(𝑡) = tan(𝑡) − 𝑡 ≥ 𝜑(0) = 0. 
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(3)*We have: 𝜏′(𝑡) = 1 −
𝜋

4
(1 + (tan(𝑡))2). 

*𝜏′(𝑡) = 0, 𝑡 ∈ [0,
𝜋

4
] ⇔ 𝑡 = 𝛼 = arctan (√

4

𝜋
− 1) ∈ [0,

𝜋

4
]. 

* On [0, 𝛼]: 𝜏 is increasing and on [𝛼,
𝜋

4
]: 𝜏 is decreasing. 

*So: 

** ∀𝑡 ∈ [0, 𝛼]  𝜏(𝑡) = 𝑡 −
𝜋

4
tan (𝑡) ≥ 𝜏(0) = 0. 

**∀𝑡 ∈ [𝛼,
𝜋

4
]   𝜏(𝑡) = 𝑡 −

𝜋

4
tan (𝑡) ≥ 𝜏 (

𝜋

4
) = 0. 

*The result follows because: [0,
𝜋

4
] = [0, 𝛼] ∪ [𝛼,

𝜋

4
]. 

Lemma6:   We have:  

(1)(i) if: 𝒂 ≥ 𝟑 , we have:  ∀𝑘 ≥ 2∃𝜆(𝑘) ∈]1 −
𝜋

4
, 1[ Such that:  

(
𝑎

𝑐
)
λ(k)

(
ln(𝑎)

ln(𝑐)
)

𝑛
𝜋
4
(1−𝜆(𝑘)+

1
𝑘
)

+ (
𝑏

𝑐
)λ(p)(

ln (𝑏)

ln (𝑐)
)n
π
4
(1−λ(k)+

1
k
) = 1 

(ii) lim
𝑘→+∞

𝜆(𝑘) = 𝜆 ∈ [1 −
𝜋

4
, 1]. 

(2)(i) if: 𝒂 < 𝟑 , we have:     ∀𝑘 ≥ 1 ∃𝜃(𝑘) ∈]1 −
𝜋

4
, 1[ Such that:  

(
𝑎 + 2

𝑐 + 2
)
θ(k)

(
ln(𝑎 + 2)

ln(𝑐 + 2)
)

𝑛
𝜋
4
(1−𝜃(𝑘)+

1
𝑘
)

+ (
𝑏

𝑐 + 2
)θ(k)(

ln (𝑏)

ln (𝑐 + 2)
)n
π
4
(1−θ(k)+

1
k
) = 1                                           

(ii) lim
𝑘→+∞

𝜃(𝑘) = 𝜃 ∈ [1 −
𝜋

4
, 1]. 

Proof: (of lemma6) 

(1)(i)*suppose: 𝑎 ≥ 3   and consider, for 𝑘 ≥ 2 ,  the continuous function defined on [1-
𝜋

4
,1] by:    

                                           𝑓(𝑡) = (
𝑎

𝑐
)
t

(
ln(𝑎)

ln(𝑐)
)
n
π

4
(1−t+

1

k
)

+ (
𝑏

𝑐
)t(

ln (𝑏)

ln (𝑐)
)n

π

4
(1−t+

1

k
) − 1   

*By the assertion (2) (i) of lemma4, we have:  

**3 ≤ 𝑎 < b < c ⇒ 𝑓 (1 −
𝜋

4
) = (

𝑎

𝑐
)1−

𝜋

4 (
ln(𝑎)

ln(𝑐)
)
n
π

4
(
π

4
+
1

k
)

+ (
𝑏

𝑐
)1−

𝜋

4 (
ln(𝑏)

ln(𝑐)
)
n
π

4
(
π

4
+
1

k
)

− 1 

= (
𝑎

𝑐
)1−

𝜋

4 (
ln(𝑎)

ln(𝑐)
)
n
π

4
(
π

4
+
1

k
)

+ (
𝑏

𝑐
)1−

𝜋

4 (
ln(𝑏)

ln(𝑐)
)
n
π

4
(
π

4
+
1

k
)

− (
𝑎

𝑐
+

𝑏

𝑐
)  

=
𝑎

𝑐
((
𝑎

𝑐
)−

𝜋

4 (
ln(𝑎)

ln(𝑐)
)
n
π

4
(
π

4
+
1

k
)

− 1) +
𝑏

𝑐
((
𝑏

𝑐
)−

𝜋

4 (
ln(𝑏)

ln(𝑐)
)
n
π

4
(
π

4
+
1

k
)

− 1) > 0. 

** We have: 
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{

1 < ln (3) ≤ ln(𝑎) < ln(𝑏) < ln(𝑐)
 

n

k
> 0

          ⇒  𝑓(1) =
𝑎

𝑐
(
ln(𝑎)

ln(𝑐)
)

nπ

4k
+

𝑏

𝑐
(
ln(𝑏)

ln(𝑐)
)

nπ

4k
− 1  

=
𝑎

𝑐
(
ln(𝑎)

ln(𝑐)
)

nπ

4k
+

𝑏

𝑐
(
ln (𝑏)

ln (𝑐)
)
nπ

4k − (
𝑎

𝑐
+

𝑏

𝑐
)  

=
𝑎

𝑐
((
ln(𝑎)

ln(𝑐)
)

nπ

4k
− 1) +

𝑏

𝑐
((
ln (𝑏)

ln (𝑐)
)
nπ

4k − 1) < 0. 

*So, by the intermediate value theorem, we have: 

                                               𝑓 (1 −
𝜋

4
) 𝑓(1) < 0 ⇒ ∀𝑘 ≥ 2∃𝜆(𝑘) ∈]1 −

𝜋

4
, 1[ such that:    𝑓(λ(k)) = 0    

(ii) The result follows by application of the Bolzano-Weierstrass theorem to the bounded sequence:(𝜆(𝑘))𝑘≥2 ⊂]1 −
𝜋

4
, 1[. 

(2) (i) If:𝑎 < 3  (so: 𝑏 ≥ 𝑎 + 3 > 𝑎 + 2 ≥ 3), applying the intermediate value theorem, (with use of the relation 
𝑎+2

𝑐+2
+

𝑏

𝑐+2
= 1),  to the continuous function defined on [1 −

𝜋

4
, 1], by: 

𝑔(𝑡)  = (
𝑎 + 2

𝑐 + 2
)

t

(
ln(𝑎 + 2)

ln(𝑐 + 2)
)

n
π
4(1−t+

1
k
)

+ (
𝑏

𝑐 + 2
)
t

(
ln (𝑏)

ln (𝑐 + 2)
)
n
π
4(1−t+

1
k
)

− 1  

we obtain (exactly such as in the assertion (1) of lemma6) the result:  

                                                       ∀𝑘 ≥ 2 ∃𝜃(𝑘) ∈]1 −
𝜋

4
, 1[ Such that: 𝑔(𝜃(𝑘)) = 0  

(ii) The result follows by application of the Bolzano-Weierstrass theorem (See proposition 14) to the bounded 

sequence:(𝜃(𝑘))𝑘≥2 ⊂]1 −
𝜋

4
, 1[. 

Lemma7: For 𝑛 =
(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
 and 𝑝  given by the assertion (4)of lemma4 and 𝜆(𝑝), 𝜃(𝑝) given by lemma 6, 

we have: 

(1) 𝑎 ≥ 3 ⇒  𝑛 ≥
1−𝜆(𝑝)

tan (1−𝜆(𝑝))
. 

(2)  𝑎 < 3 ⇒  𝑛 ≥
1−𝜃(𝑝)

tan (1−𝜃(𝑝))
. 

Proof: (of lemma7) 

(1)*If 𝑎 ≥ 3: 

*Suppose contrarily that:  𝑛 <
1−𝜆(𝑝)

tan (1−𝜆(𝑝))
.  

*We have: 𝜆(𝑝) < 1 − 𝑛tan(1 − 𝜆(𝑝)).  

*So, by the assertion (1) (i) of lemma6 and the assertion (5) (i) of lemma 4, we have successively: 

0=(
𝑎

𝑐
)λ(p) (

ln(𝑎)

ln(𝑐)
)
n
π

4
(1−λ(p)+

1

p
) 

+ (
𝑎

𝑐
)λ(p) (

ln (𝑎)

ln (𝑐)
)
n
π

4
 (1−λ(p)+

1

p
) 
− 1.  
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>(
𝑎

𝑐
)1−ntan(1−λ(p))

  
(
ln (𝑎)

ln (𝑐)
)
n
π

4
(1−λ(p)+

1

p
)
 

+ (
𝑏

𝑐
)
1−ntan(1−λ(p))

  

(
ln(𝑎)

ln(𝑐)
)
n
π

4
(1−λ(p)+

1

p
)
 

–  1.  

=(
𝑎

𝑐
)1−ntan(1−λ(p))

  
(
ln (𝑎)

ln (𝑐)
)
n
π

4
(1−λ(p)+

1

p
)
 

+ (
𝑏

𝑐
)
1−ntan(1−λ(p))

  

(
ln(𝑎)

ln(𝑐)
)
n
π

4
(1−λ(p)+

1

p
)
 

− (
𝑎

𝑐
+

𝑏

𝑐
). 

=
𝑎

𝑐
((
𝑎

𝑐
)−ntan(1−λ(p))

  
(
ln(𝑎)

ln(𝑐)
)
n
π

4
(1−λ(p)+

1

p
)
− 1) +

𝑏

𝑐
((
𝑏

𝑐
)−ntan(1−λ(p))(

ln(𝑎)

ln(𝑐)
)
n
π

4
(1−λ(p)+

1

p
)
  

− 1) > 0. 

*The obtained assertion “0<0” being impossible, we have:∶  𝑛 ≥
1−𝜆(𝑝)

tan (1−𝜆(𝑝))
 .   

(2)By analogy, if 𝑎 < 3, the result is obtained exactly as in the assertion (1) of lemma7 with use of the assertion 

(2) (i) of lemma6 and the assertion (5) (ii) of lemma4. 

RETURN TO THE PROOF OF THE THEOREM1: 
First case: if 𝑎 ≥ 3 

*By the assertion the assertion (3) of lemma5 and the assertion (1) of lemma7, we have:   

                            0 < 1 − 𝜆(𝑝) <
𝜋

4
⇒  

1

10
= 0.1 ≥  𝑛 =

(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
≥

1−𝜆(𝑝)

tan (1−𝜆(𝑝))
≥

𝜋

4
= 0.7853..   

*This being impossible the first case cannot occur. 

Second case: if 𝑎 < 3 

* By the assertion the assertion (3) of lemma5 and the assertion (2) of lemma7, we have:   

                            0 < 1 − 𝜃(𝑝) <
𝜋

4
⇒  

1

10
= 0.1 ≥  𝑛 =

(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
≥

1−𝜃(𝑝)

tan (1−𝜃(𝑝))
≥

𝜋

4
= 0.7853…   

 

* This being impossible the second case cannot occur. 

Conclusion: The two possible cases “𝑎 ≥ 3" and “𝑎 < 3" of lemma 7 couldn’t both occur, the wanted 

contradiction is reached. So our starting absurd hypothesis: 

                          (𝑃):” ∃𝜖 > 0 ∃𝑎, 𝑏, 𝑐 ∈ ℤ∗   such that: {

𝑎 + 𝑏 = 𝑐
gcd(𝑎, 𝑏, 𝑐) = 1

𝑛 = 𝑛(𝑎, 𝑏, 𝑐) =
(𝑟(𝑎𝑏𝑐))1+𝜖

max (|𝑎|,|𝑏|,|𝑐|)
≤

1

10

" is not true. 

*So its negation 𝑛𝑜𝑛(𝑃) is true. 

*But the assertion (𝑄) "∃𝜖 > 0 ∀𝐾 > 0∃𝑎, 𝑏, 𝑐 ∈ ℤ∗   such that: {

𝑎 + 𝑏 = 𝑐
gcd(𝑎, 𝑏, 𝑐) = 1

(𝑟(𝑎𝑏𝑐))
1+𝜖

max(|𝑎|,|𝑏|,|𝑐|)
≤

1

𝐾

" implies the assertion (P). 

*So, by contraposition, we have: 𝑛𝑜𝑛(𝑃) ⇒ 𝑛𝑜𝑛(𝑄).   

*So: 𝑛𝑜𝑛 (𝑃) being true: 𝑛𝑜𝑛(𝑄) is true. 

*But: 𝑛𝑜𝑛(𝑄) is: « ∀𝜖 > 0∃𝐾𝜖 > 0∀𝑎, 𝑏, 𝑐 ∈ ℤ
∗ {

𝑎 + 𝑏 = 𝑐
gcd(𝑎, 𝑏, 𝑐) = 1

⇒ max ( |𝑎|, |𝑏|, |𝑐|) < 𝐾𝜖  (𝑟(𝑎𝑏𝑐))1+𝜖».  
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*So: the abc conjecture is true. 

Conclusion: This finishes the proof of the theorem1. 

SOME CONSQUENCES OF THE ABC CONJECTURE: 
1. THE FERMAT LAST THEOREM: 

Corollary 1: (The Fermat last theorem) (See [40], [132]) the abc-conjecture implies the Fermat's Last Theorem. 

That is: ∃(𝑎, 𝑏, 𝑐) ∈ ℕ3 such that: {

𝑎𝑏𝑐 ≠ 0
𝑎𝑚 + 𝑏𝑚 = 𝑐𝑚

gcd(𝑎, 𝑏, 𝑐) = 1
𝑚 ≥ 2

⇒ 𝑚 = 2. 

Proof: (of corollary 1) 

*Let  𝑚 ∈ ℕ∗ with 𝑚 ≥ 2 and (𝑎, 𝑏, 𝑐) ∈ ℕ∗
3 such that: 𝑎𝑚 + 𝑏𝑚 = 𝑐𝑚 and gcd (𝑎, 𝑏, 𝑐) =1. 

*Show that:𝑚 = 2. 

*we can suppose: 𝑎 < 𝑏 < 𝑐 and 𝑐 ≥ 3.  

*By the Baker abc-conjecture version, for any abc-triple (𝑎, 𝑏, 𝑐): we have: 𝑐 < (𝑟(𝑎𝑏𝑐))2. 

*So 𝑐𝑚 < (𝑟(𝑎𝑚𝑏𝑚𝑐𝑚))2 = (𝑟(𝑎𝑏𝑐))2 < (𝑎𝑏𝑐)2 < 𝑐6,   hence: 2 ≤ 𝑚 ≤ 5. 

*Finally−because the Diophantine equation 𝑎𝑚 + 𝑏𝑚 = 𝑐𝑚 has not non trivial solutions for:𝑚 = 3,4,5 − we 

have well: 𝑚 = 2. 

2. THE BEAL CONJECTURE: 
Corollary 2: (The Beal conjecture) (see [41], [42]) the abc-conjecture implies the Beal conjecture. That is: 

∃(𝑎, 𝑏, 𝑐) ∈ ℕ3 such that: {

𝑎𝑏𝑐 ≠ 0
𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧

gcd(𝑎, 𝑏, 𝑐) = 1
𝑥, 𝑦, 𝑧 ≥ 2

⇒ 𝑚 = min(𝑥, 𝑦, 𝑧) = 2. 

Proof: (of corollary 2) 

First Method:  By M. Ghanim 

*Let 𝑥, 𝑦, 𝑧 ∈ ℕ∗  ≥ 2,  (𝑎, 𝑏, 𝑐) ∈ ℕ∗
3 such that: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 and gcd (𝑎, 𝑏, 𝑐) =1.  

* Prove that  m = min(𝑥, 𝑦, 𝑧) = 2. 

*We can suppose: 𝑎𝑥 < 𝑏𝑦 < 𝑐𝑧 . 

*For 𝑎 = 1: the Mihailescu theorem assures that the single solution of the Diophantine equation 1 + 𝑏𝑦 = 𝑐𝑧is 

(𝑏, 𝑦, 𝑐, 𝑧) = (2,3,3,2). 

*So we can suppose  𝑎 ≥ 2. 

Claim1: We have:  
4

7
<

1

x
+

1

y
+

1

z
. 

Proof: (of claim1) 

*Applying the Baker Version of the abc-conjecture, we have: 
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                                           𝑐𝑧 < (𝑟(𝑎𝑏𝑐))
7

4 < (𝑎𝑏𝑐)
7

4 = (𝑎𝑥)
7

4𝑥(𝑏𝑦)
7

4𝑦(𝑐𝑧)
7

4𝑧 < 𝑐
7

4
𝑧(
1

x
+
1

𝑦
+
1

𝑧
)
  

*That is: 
4

7
<

1

x
+

1

y
+

1

z
. 

Claim2: We have: 𝑚 = min (𝑥, 𝑦, 𝑧) ≤ 5. 

Proof: (of claim2) 

*By claim1, we have:
4

7
< 

1

x
+

1

y
+

1

z
⇒

4

7
≤

3

min (𝑥,   𝑦,   𝑧)
. 

*That is: 2 ≤ 𝑚 = min(𝑥, 𝑦, 𝑧) < 3(
7

4
) =

21

4
= 5.25 i.e. 2 ≤ min (𝑥, 𝑦, 𝑧) ≤ 5. 

Claim3: We have necessarily 𝑚 = min(𝑥, 𝑦, 𝑧) = 2.  

Proof: (of claim3) 

Indeed, proceed by the absurd reasoning and suppose that: 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 with 𝑎𝑏𝑐 ≠ 0 and gcd(𝑎, 𝑏, 𝑐) = 1, 

where: 𝑥 = 𝑚 + 𝛼, 𝑦 = 𝑚 + 𝛽, 𝑧 = 𝑚 + 𝛾 with 𝛼𝛽𝛾 = 0 and 𝑚 = min(𝑥, 𝑦, 𝑧) = 3 or 4 or 5. 

Under-claim1: (1)∀𝑘 ≥ 1∃𝛿(𝑘) ∈]0,2[ such that: 

𝑎𝑥𝛿(𝑘)(ln (𝑎𝛼+
1
𝑘))𝛿(𝑘)(2−𝛿(𝑘)) + 𝑏𝑦𝛿(𝑘)(ln (𝑏𝛽+

1
𝑘))𝛿(𝑘)(2−𝛿(𝑘)) = 𝑐𝑧𝛿(𝑘)(ln (𝑐𝛾+

1
𝑘))𝜃(𝑘)(2−𝛿(𝑘)) 

(2) lim
𝑘→+∞

𝛿(𝑘) = 𝛿 ∈ [0,2]. 

(3)𝑎𝑥𝛿(ln(𝑎𝛼))𝛿(2−𝛿) + 𝑏𝑦𝛿(ln(𝑏𝛽))𝛿(2−𝛿) = 𝑐𝑧𝛿(ln(𝑐𝛾))𝛿(2−𝛿).  

Proof: (of under-claim1) 

(1)* Consider, on [0, 2] for 𝑘 ≥ 1, the continuous function: 

ℎ𝑘(𝑡) = 𝑎
𝑥𝑡(ln (𝑎𝛼+

1
𝑘))𝑡(2−𝑡) + 𝑏𝑦𝑡(ln (𝑏𝛽+

1
𝑘))𝑡(2−𝑡) − 𝑐𝑧𝑡(ln (𝑐𝛾+

1
𝑘))𝑡(2−𝑡) 

*We have: 

**ℎ𝑘(0) = 1 + 1 − 1 = 1 > 0. 

**{
4 ≤ 𝑎𝑥 < 𝑏𝑦 < 𝑐𝑧

𝑎𝑥

𝑐𝑧
+

𝑏𝑦

𝑐𝑧
= 1

⇒ℎ𝑘(2) = 𝑎
2𝑥 + 𝑏2𝑦 − 𝑐2𝑧 = 𝑐2𝑧 ((

𝑎𝑥

𝑐𝑧
)
2

+ (
𝑏𝑦

𝑐𝑧
)
2

− 1) < 𝑐2𝑧 (
𝑎𝑥

𝑐𝑧
+

𝑏𝑦

𝑐𝑧
− 1) = 0. 

*So, by the intermediate value theorem, ∃𝛿(𝑘) ∈]0,2[ such that: ℎ𝑘(𝛿(𝑘)) = 0. 

*The result follows. 

(2)The result follows by applying the Bolzano-Weierstrass theorem to the bounded sequence: (𝛿(𝑘))𝑘≥1 ⊂]0,2[. 

(3)The result follows by tending: 𝑘 → +∞ in relation (1) of claim3 with use of the assertion (2) of claim3. 

Under-claim2: We have:𝛼 = 𝛽 = 𝛾 = 0. 
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Proof: (of the under-claim2) 

Because: 𝛼𝛽𝛾 = 0, we have: 𝛼 = 0 𝑜𝑟 𝛽 = 0 𝑜𝑟 𝛾 = 0. 

First case: 𝛾 = 0. 

By the assertion (3) of the under-claim 1, we have: 

{
 

 
𝑎𝑥𝛿𝛼𝛿(2−𝛿)(ln(𝑎))𝛿(2−𝛿) + 𝑏𝑦𝛿𝛽𝛿(2−𝛿)(ln(𝑏))𝛿(2−𝛿) = 𝑐𝑧𝛿𝛾𝛿(2−𝛿)(ln(𝑐))𝛿(2−𝛿)

𝛾 = 0

𝑎𝑥𝛿(ln(𝑎))𝛿(2−𝛿) > 0 𝑎𝑛𝑑 𝑏𝑦𝛿(ln(𝑏))𝛿(2−𝛿) > 0
𝛼 ≥ 0 𝑎𝑛𝑑 𝛽 ≥ 0

 ⇒ 𝛼 = 𝛽 = 𝛾 = 0. 

Second case: 𝛼 = 0. 

*We have: 𝑏𝑦𝛿𝛽𝛿(2−𝛿)(ln(𝑏))𝛿(2−𝛿) = 𝑐𝑧𝛿𝛾𝛿(2−𝛿)(ln(𝑐))𝛿(2−𝛿).  

*i.e.: 

𝑏𝑦𝛽2−𝛿(ln(b))2−δ = 𝑐𝑧𝛾2−𝛿(ln(c))2−δ or 𝑏
𝑦

2−𝛿𝛽 ln(𝑏) = 𝑐
𝑧

2−𝛿𝛽 ln(𝑐) or 𝑏𝛽𝑏
𝑦
2−𝛿 = 𝑐𝛾𝑐

𝑧
2−𝛿  or 𝑏𝛽 = 𝑐

𝛾(
𝑐𝑧

𝑏𝑦
)
1
2−𝛿

. 

*But by the Bezout theorem: gcd(𝑎, 𝑏, 𝑐) = 1 ⇒ ∃𝑢, 𝑣 two integers such that: 

{
𝑣 > 𝑢 > 0

−𝑢𝑐
𝛾𝐸((

𝑐𝑧

𝑏𝑦
)

1
2−𝛿

)
+ 𝑣𝑏𝛽 = 1

 

*So: −𝑢𝑐
𝛾𝐸((

𝑐𝑧

𝑏𝑦
)

1
2−𝛿

)
+ 𝑣𝑏𝛽 = 1 = −𝑢𝑐

𝛾𝐸((
𝑐𝑧

𝑏𝑦
)

1
2−𝛿

)
+ 𝑣𝑐

𝛾(
𝑐𝑧

𝑏𝑦
)
1
2−𝛿

= 𝑐
𝛾𝐸((

𝑐𝑧

𝑏𝑦
)

1
2−𝛿

)

(

 𝑣𝑐
𝛾((

𝑐𝑧

𝑏𝑦
)

1
2−𝛿

−𝐸((
𝑐𝑧

𝑏𝑦
)

1
2−𝛿

))

−

𝑢

)

 . 

*But: ((
𝑐𝑧

𝑏𝑦
)

1

2−𝛿
− 𝐸 ((

𝑐𝑧

𝑏𝑦
)

1

2−𝛿
)) ≥ 0 𝑎𝑛𝑑 𝑣 > 0 ⇒ 1 ≥ 𝑐

𝛾𝐸((
𝑐𝑧

𝑏𝑦
)

1
2−𝛿

)

(𝑣 − 𝑢) > 0. 

*That is, working with integers, 1 = 𝑐
𝛾𝐸((

𝑐𝑧

𝑏𝑦
)

1
2−𝛿

)

(𝑣 − 𝑢) i.e. 1 = 𝑐
𝛾𝐸((

𝑐𝑧

𝑏𝑦
)

1
2−𝛿

)

= 𝑣 − 𝑢. 

*So: {1 = 𝑐
𝛾𝐸((

𝑐𝑧

𝑏𝑦
)

1
2−𝛿

)

𝑐 > 2                     

  ⇒ 𝛾 = 0 ⇒ 𝛽 = 𝛾 = 𝛼 = 0. 

Third case: 𝛽 = 0. 

By analogy the third case is obtained exactly as the second case. So: 𝛼 = 𝛽 = 𝛾 = 0. 

Return to the proof of claim3: 
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*We have: {
𝑎𝑚+𝛼 + 𝑏𝛽+𝑚 = 𝑐𝛾+𝑚

𝛼 = 𝛽 = 𝛾 = 0
m = 3,4 or 5

⇒    {
𝑎𝑚 + 𝑏𝑚 = 𝑐𝑚

𝑚 = 3,4 𝑜𝑟 5
. 

*But, by the Euler-Gauss theorem, this is impossible. 

*So, necessarily, we have: 𝑚 = min(𝑥, 𝑦, 𝑧) = 2. 

*This ends the deduction of the Beal conjecture from the abc-conjecture.  

Second method: See S. Laishram and T.N. Shorey [56] for a second method. 

3. THE FERMAT CATALAN CONJECTURE: 
Corollary 3: (see [17], [111], [112]) Let 𝐴, 𝐵, 𝐶 be integers then the abc-conjecture implies that the below set is 

finite: 

     𝑇𝐴,𝐵,𝐶 = {(𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧) ∈ ℕ
6,
1

𝑥
+

1

𝑦
+
1

𝑧
< 1, 𝑎𝑏𝑐 ≠ 0, 𝑎𝑥 < by < cz, gcd(𝐴𝑎𝑥, 𝐵𝑏𝑦, 𝐶𝑐𝑧) = 1, 𝐴𝑎𝑥 + 𝐵𝑏𝑦 = 𝐶𝑐𝑧}  

Proof: (of corollary 3) 

Claim 5: Let 𝑝, 𝑞, 𝑟 integers≥ 2, we have:
1

𝑝
+

1

𝑞
+

1

𝑟
< 1 ⇒

1

𝑝
+

1

𝑞
+

1

𝑟
≤

41

42
.  

Proof: (of calim5) 

*We can suppose: 2 ≤ 𝑝 ≤ 𝑞 ≤ 𝑟. 

*First case: 𝑝 = 2. 

We have: 
1

𝑝
+

1

𝑞
+

1

𝑟
< 1 ⇒

1

𝑞
+

1

𝑟
< 1 −

1

𝑝
= 1 −

1

2
=

1

2
⇒ 𝑟 ≥ 𝑞 ≥ 3. 

Remark: if: 2 ≤ 𝑞 < 3, we have: 𝑞 = 2, so: 
1

𝑞
+

1

𝑟
=

1

2
+

1

𝑟
<

1

2
⇒

1

𝑟
< 0 which is impossible. 

First under-case: 𝑞 = 3. 

*
1

𝑞
+

1

𝑟
=

1

3
+

1

𝑟
<

1

2
⇒

1

𝑟
<

1

2
−

1

3
=

1

6
⇒ 𝑟 > 6 ⇒ 𝑟 ≥ 7. 

*So: 
1

𝑝
+

1

𝑞
+

1

𝑟
≤

1

2
+

1

3
+

1

7
=

41

42
. 

Second under-case: 𝑞 = 4. 

*
1

𝑞
+

1

𝑟
=

1

4
+

1

𝑟
<

1

2
⇒

1

𝑟
<

1

2
−

1

4
=

1

4
⇒ 𝑟 > 4 ⇒ 𝑟 ≥ 5. 

*So: 
1

𝑝
+

1

𝑞
+

1

𝑟
≤

1

2
+

1

4
+

1

5
=

19

20
<

41

42
. 

Third under-case: 𝑞 ≥ 5. 

*We have: 5 ≤ 𝑞 ≤ 𝑟. 

*So:
1

𝑝
+

1

𝑞
+

1

𝑟
=

1

2
+

1

𝑝
+

1

𝑞
≤

1

2
+

2

5
=

9

10
<

41

42
.  
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*Second case:  𝑝 = 3. 

First under-case: 𝑞 = 3. 

*We have: 
1

𝑟
< 1 −

1

𝑝
−

1

𝑞
= 1 −

2

3
=

1

3
⇒ 𝑟 > 3 ⇒ 𝑟 ≥ 4. 

*So: 
1

𝑝
+

1

𝑞
+

1

𝑟
=

1

3
+

1

3
+

1

𝑟
≤

2

3
+

1

4
=

11

12
<

41

42
. 

Second under-case: 𝑞 ≥ 4. 

*We have:4 ≤ 𝑞 ≤ 𝑟. 

*So: 
1

𝑝
+

1

𝑞
+

1

𝑟
=

1

3
+

1

𝑞
+

1

𝑟
≤

1

3
+

2

4
=

1

3
+

1

2
=

5

6
<

41

42
. 

*Third case: 𝑝 ≥ 4. 

*We have: 𝑟 ≥ 𝑞 ≥ 𝑝 ≥ 4. 

*So: 
1

𝑝
+

1

𝑞
+

1

𝑟
≤

3

4
<

41

42
. 

Claim6: ∃𝐿 > 0∀(𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧) ∈ 𝑇𝐴,𝐵,𝐶    we have: 𝑎
𝑥 < 𝑏𝑦 < 𝑐𝑧 ≤ 𝐿. 

Proof: (of claim6) 

*Let:  
1

41
> 𝜖 > 0 ∃𝐾 > 0 such that for the abc-triple(𝐴𝑎𝑥, 𝐵𝑏𝑦 , 𝐶𝑐𝑧), we have: 

min(|A|, |B|, |C|)max(𝑎𝑥 , by, cz) = min(|A|, |B|, |C|)cz ≤ max(|𝐴|𝑎𝑥 , |𝐵|𝑏𝑦, |𝐶|𝑐𝑧) < 𝐾(𝑟(𝐴𝐵𝐶𝑎𝑥𝑏𝑦𝑐𝑧))
1+𝜖

 

< 𝐾|𝐴𝐵𝐶|1+𝜖(𝑎𝑏𝑐)1+𝜖  

< 𝐾|𝐴𝐵𝐶|1+𝜖(𝑐
𝑧

𝑥𝑐
𝑧

𝑦𝑐)1+𝜖 = 𝐾|𝐴𝐵𝐶|1+𝜖𝑐
(1+𝜖)(1+𝑧(

1

𝑥
+
1

𝑦
))
.   

*So:𝑐
𝑧−𝑧(1+𝜖)(

1

𝑥
+
1

𝑦
+
1

𝑧
)
<

|𝐴𝐵𝐶|1+𝜖

min (|𝐴|,|𝐵|,|𝐶|)
𝐾. 

*But: by claim5, we have:  

1

𝑥
+

1

𝑦
+

1

𝑧
< 1 ⇒

1

𝑥
+

1

𝑦
+

1

𝑧
≤

41

42
⇒ 𝑧 − 𝑧(1 + 𝜖) (

1

𝑥
+

1

𝑦
+

1

𝑧
) ≥ 𝑧 −

41

42
𝑧(1 + 𝜖) =

1

42
−

41𝜖

42
  

⇒ 𝑐𝑧
(
1

42
−
41𝜖

42
)
<

|𝐴𝐵𝐶|1+𝜖

min (|𝐴|,|𝐵|,|𝐶|)
𝐾.  

*So: 
1

42
−

41𝜖

42
> 0 ⇒ 𝑎𝑥 < 𝑏𝑦 < 𝑐𝑧 < (

|𝐴𝐵𝐶|1+𝜖

min (|𝐴|,|𝐵|,|𝐶|)
𝐾)

1
1
42−

41𝜖
42 = 𝐿.  

Conclusion: So, L being an absolute constant, there are a finite number of abc-triples (𝑎, 𝑏, 𝑐) and a finite number 

of triples (𝑥, 𝑦, 𝑧), such that 
1

𝑥
+

1

𝑦
+

1

𝑧
< 1, resolving the Diophantine equation  𝐴𝑎𝑥 + 𝐵𝑏𝑦 = 𝐶𝑐𝑧 . 

Corollary4 :( The Fermat–Catalan conjecture) The Below set is finite: 

𝑇 = {(𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧) ∈ ℕ6,
1

𝑥
+
1

𝑦
+
1

𝑧
< 1, 𝑎𝑏𝑐 ≠ 0, gcd(𝑎, 𝑏, 𝑐) = 1, 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧} 

Proof: (of Corollary 4) 

The result follows from corollary 3 for 𝐴 = 𝐵 = 𝐶 = 1. 
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Remark: When we don’t allow (𝑥, 𝑦, 𝑧) varying, Henri Darmon and Andrew Granville showed (see [21]) in 1994, 

by a proof none based on the abc-conjecture, the below theorem: 

Theorem2: (Darmon-Granville [21]) let 𝑥, 𝑦, 𝑧 positive integers such that 
1

𝑥
+

1

𝑦
+

1

𝑧
< 1 and 𝐴, 𝐵, 𝐶 fixed integers. 

Then: the set 𝑇𝑥,𝑦,𝑧,𝐴,𝐵,𝐶 = {(𝑎, 𝑏, 𝑐) ∈ ℕ3, 𝑎𝑏𝑐 ≠ 0, gcd(𝐴𝑎, 𝐵𝑏) = 1, 𝐴𝑎𝑥 + 𝐵𝑏𝑦 = 𝐶𝑐𝑧} is finite. 

4. THE ROTH THEOREM: 
Corollary 5: (Roth theorem on Diophantine approximation of algebraic numbers [88]) Let 𝛼 an algebraic number 

over ℚ and 𝜖 > 0, then the abc-conjecture implies that: |𝛼 −
𝑝

𝑞
| <

1

𝑞2+𝜖
 for only finitely many rational numbers. 

Remark: (1) Klaus Roth (1925-2015) is a German-born British mathematician. 

(2) This theorem was proved by Roth in 1955 (see [88]). This proof earned Roth the Fields prize. 

(3)See also Machiel Van Frankenhuysen [37]. 

Proof: (of corollary 5) 

*Let 𝛼 an algebraic number over ℚ and 𝜖 > 0.  

*Show that the set 𝑅= {(𝑝, 𝑞) ∈ ℤ∗ × ℕ∗ such that |𝛼 −
𝑝

𝑞
| <

1

𝑞2+𝜖
  } is finite. 

*Suppose contrarily that 𝑅 contains an infinite sequence (𝑝𝑛 , 𝑞𝑛) with 𝑝𝑛 ∈ ℤ
∗ and 𝑞𝑛 ∈ ℕ

∗.  

*Denote by 𝐸(𝑥) the integer part of the real 𝑥 i.e. the single integer 𝐸(𝑥) such that: 𝐸(𝑥) ≤ 𝑥 < 𝐸(𝑥) + 1. 

*(𝑝𝑛 , 𝑞𝑛) ∈ 𝑅 ⇒ |𝛼 −
𝑝𝑛

𝑞𝑛
| <

1

𝑞𝑛
2+𝜖 ⇒ 𝑞𝑛 ≤ 𝑞𝑛

4

7
(2+𝜖) < (

1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)
4

7 ⇒ 𝑞𝑛 ≤ 𝐸((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)
4

7). 

*Consider the abc-triples (1, 𝐸((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

) − 1, 𝐸((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

) i.e. such that: 

{
 
 
 

 
 
 
gcd(1, 𝐸 ((

1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

)− 1, 𝐸 ((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

)) = 1

1 + (𝐸 ((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

)− 1) = 𝐸((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

)

  .  

*By the Backer abc-conjecture version (see the assertion (i) of proposition 9), applied to the abc-triple 

(1, 𝐸 ((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

) − 1, 𝐸((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

))  we have: 

𝑞𝑛 ≤  𝐸 ((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

) < (𝑟((𝐸 ((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

) − 1)𝐸 ((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

)))
7

4 . 
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*By the quality version of the abc-conjecture (see the assertion (iii) of proposition 9) applied to the abc-triple 

(1, 𝐸 ((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

)− 1, 𝐸 ((
1

|𝛼−
𝑝𝑛
𝑞𝑛
|
)

4

7

)), there are a finite number of such triples satisfying: 

ln (
1

|𝛼−
𝑝𝑛
𝑞𝑛

|
)

ln (𝑞𝑛)
=

ln ((
1

|𝛼−
𝑝𝑛
𝑞𝑛

|
)

4
7

)

4

7
ln (𝑞𝑛)

≥

ln (𝐸

(

 
 
((

1

|𝛼−
𝑝𝑛
𝑞𝑛

|
)

4
7

)

 
 
)

4

7
ln ((𝑟(

(

 
 
𝐸

(

 
 
(

1

|𝛼−
𝑝𝑛
𝑞𝑛

|
)

4
7

)

 
 
−1

)

 
 
𝐸

(

 
 
(

1

|𝛼−
𝑝𝑛
𝑞𝑛

|
)

4
7

)

 
 
))
7
4)

> 1 + 𝜖.  

*That is: there is a finite number of rational numbers:  
𝑝𝑛

𝑞𝑛
, 𝑞𝑛 > 0 such that: 

1

𝑞𝑛
2+𝜖 > |𝛼 −

𝑝𝑛

𝑞𝑛
|. 

*Finally, this contradicting our starting absurd hypothesis (assuring that the sequence (𝑝𝑛, 𝑞𝑛) is infinite), the 

proof is finished. 

5. THE WIEFERICH-SILVERMAN THEOREM: 
Definition7: (Wieferich number [114]) For: 𝑎 ∈ ℕ, 𝑎 ≥ 2: a Wieferich number in the base 𝑎 is a prime 𝑝 such 

that: 𝑝2 divides 𝑎𝑝−1 − 1. 

Example: The sole Wieferich primes < 4. 1012 are: 1093 and 3511. 

Remark: (1) Arthur Josef Alwin Wieferich (1884-1954) is a German Mathematician having some works in 

Number theory. 

(2) Wieferich defined his numbers during 1909 in his works on the Fermat last theorem. 

Corollary6: (Wieferich [114]-Silverman [98] theorem (see also [17], [93], [111], [112]))∀𝑎 ∈ ℕ∗ − {1}, the abc-conjecture 

implies that the set:  𝑈(𝑎) = {𝑝 ∈ ℙ, 𝑝2 doas not divide 𝑎𝑝−1 − 1} is infinite.  

Remark: Silverman showed this theorem in 1988 [98]. 

Proof: (of corollary 6) 

*Let 𝑎 an integer≥ 2 and suppose contrarily that 𝑈(𝑎) is finite. 

*Let 𝑛 an arbitrarily integer. 

Claim5: ∃(𝛼(𝑝))𝑝∈ℙ ≥ 0∃𝑢𝑛 = ∏ 𝑝𝛼(𝑝)𝑝∈𝑈(𝑎) and  𝑣𝑛 = ∏ 𝑝α(p)𝑝∈ℙ−𝑈(𝑎)  such that 𝑎𝑛 − 1 = 𝑢𝑛𝑣𝑛 . 

Where: the set {𝑝 ∈ ℙ − 𝑈(𝑎), 𝛼(𝑝) ≠ 0} is finite. 

Proof: (of claim5) 

The result follows by the arithmetical fundamental theorem. 

Claim 6: ∃𝐿 > 0 an absolute constant such that 𝑟(𝑢𝑛) = radical of 𝑢𝑛 ≤ 𝐿.  

Proof: (of claim7) 

∗ 𝑈(𝑎) being finite, it is sufficient to take: 𝐿 = ∏ 𝑝𝑝∈𝑈(𝑎) . 
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*We have well: 𝑟(𝑢𝑛) ≤ 𝐿. 

Claim7: We have: a prime integer 𝑝 divides 𝑣𝑛 ⇒ 𝑝2 divides 𝑣𝑛 . 

Proof: (of claim7) 

Remark: given an integer d and a positive integer m such that gcd(𝑑,𝑚) = 1, the multiplicative 

order of d modulo m is 𝑜𝑚(𝑑) =min ({𝑘 ∈ ℕ∗, 𝑑𝑘 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑚)}. 

*By claim 5: {
𝑎𝑛 − 1 = 𝑢𝑛𝑣𝑛

𝑝 prime dividing 𝑣𝑛
⇒ 𝑝 das not divide 𝑎 ⇒ gcd(𝑝, 𝑎) = 1. 

*Let: 𝑚1 = 𝑜𝑝(𝑎) and 𝑚2 = 𝑜𝑝2(𝑎). 

*We have : 

 {
𝑎𝑚1 = 1 + 𝛿𝑝

𝑝 prime divides 𝐶𝑝
𝑘 =

𝑝!

𝑘!(𝑝−𝑘)!
 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑝 − 1

⇒ 𝑎𝑚1𝑝 = (1 + 𝛿𝑝)𝑝 = 1 + ∑ 𝐶𝑝
𝑘(𝛿𝑝)𝑘 ≡ 1(𝑚𝑜𝑑𝑢𝑙𝑜 𝑝2).

𝑝
𝑘=1  

*So: 𝑚2 = 𝑜𝑝2(𝑎) ⇒ 𝑚2 divides 𝑚1𝑝. 

*But: 𝑚2 = 𝑜𝑝2(𝑎) ⇒ 𝑎𝑚2 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑝2) ⇒ 𝑎𝑚2 ≡ 1(𝑚𝑜𝑑𝑢𝑙𝑜 𝑝). 

*So: 𝑚1 = 𝑜𝑝(𝑎) ⇒ 𝑚1 divides 𝑚2. 

*We have:  

{
𝑚1𝑝 = 𝑠𝑚2

𝑚2 = 𝑡𝑚1
⇒ 𝑚2𝑝 = 𝑡(𝑚1𝑝) = 𝑠𝑡𝑚2 ⇒ 𝑝 = 𝑠𝑡, 𝑝 being prime⇒ (𝑠 = 1 𝑎𝑛𝑑 𝑡 = 𝑝)𝑜𝑟(𝑠 = 𝑝 𝑎𝑛𝑑 𝑡 = 1) 

⇒ 𝑚1 = 𝑚2 Or 𝑚2 = 𝑝𝑚1. 

First case: 𝑚2 = 𝑝𝑚1. 

*By claim5: 𝑝 divides 𝑣𝑛 ⇒ 𝑝 ∈ ℙ − 𝑈(𝑎) ⇒ 𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑𝑢𝑙𝑜 𝑝2). 

*So: 𝑚2 = 𝑜𝑝2(𝑎) ⇒ 𝑚2 divides 𝑝 − 1. 

*So: 𝑝 − 1 = 𝑙𝑚2 = 𝑙𝑝𝑚1 ⇒ 𝑝 𝑑𝑖𝑣𝑑𝑒𝑠 𝑝 − 1 ⇒ 𝑝 = 1.  

*This contradicting the fact that 𝑝 is a prime integer≥ 2, this case cannot occur. 

Second case: 𝑚2 = 𝑚1. 

*By claim6, we have: 𝑝 divides 𝑣𝑛 ⇒ 𝑝 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑎𝑛 − 1 ⇒ 𝑎𝑛 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑝). 

*So: 𝑚1 = 𝑜𝑝(𝑎) ⇒ 𝑚1 divides 𝑛. 

*So: 𝑚2 = 𝑚1 divides 𝑛 ⇒ 𝑛 = 𝑟𝑚2. 

*So, we have:  

𝑎𝑚2 = 1 + 𝜎𝑝2 ⇒ 𝑎𝑛 = 𝑎𝑟𝑚2 = (1 + 𝜎𝑝2)𝑟 = 1 + ∑ 𝐶𝑟
𝑘(𝜎𝑝2)𝑘 = 1 + 𝑝2∑ 𝐶𝑟

𝑘𝜎𝑘𝑝2𝑘−2𝑟
𝑘=1

𝑟
𝑘=1 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑝2).  

*Finally: 𝑝 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑣𝑛 and 𝑝
2 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑎𝑛 − 1 = 𝑢𝑛𝑣𝑛 ⇒ 𝑝2 divides 𝑣𝑛 . 
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Claim8: We have: 𝑟(𝑣𝑛) ≤ 𝑣𝑛
1

2. 

Proof: (of claim8) 

By claim 7: 𝑣𝑛 = ∏ 𝑝𝛼(𝑝)𝑝∈ℙ−𝑈(𝑎)  with 𝛼(𝑝) = 0 𝑜𝑟 𝛼(𝑝) ≥ 2 ⇒ 𝑣𝑛
1

2 = ∏ 𝑝
1

2
𝛼(𝑝) ≥ 𝑟(𝑣𝑛).𝑝∈ℙ−𝑈(𝑎)  

Claim9: (the Wanted contradiction) ∃𝐾 an absolute constant such that 𝑣𝑛 ≤ 𝐾. 

Proof: (of claim9) 

*Applying the abc-Conjecture to the abc-triple (1,𝑢𝑛𝑣𝑛, 𝑎
𝑛), for 0 < 𝜖 < 1,we have: ∃𝐾(𝜖) > 0 such that:  

𝑣n ≤ max(1, 𝑢𝑛𝑣𝑛 , 𝑎
𝑛) ≤ 𝐾(𝜖)𝑟(𝑢𝑛𝑣𝑛𝑎

𝑛)1+𝜖 = 𝐾(𝜖)(𝑟(𝑢𝑛))
1+𝜖(𝑟(𝑣𝑛))

1+𝜖(𝑟(𝑎𝑛))1+𝜖 =

𝐾(𝜖)(𝑟(𝑢𝑛))
1+𝜖
(𝑟(𝑣𝑛))

1+𝜖
(𝑟(𝑎))

1+𝜖
.  

*So, by claim6, claim8: 

𝑣𝑛 ≤ 𝐾(𝜖)𝐿
1+𝜖𝑣𝑛

1+𝜖

2 (𝑟(𝑎))1+𝜖  i.e. 𝑣𝑛
1−𝜖

2 ≤ 𝐾(𝜖)𝐿1+𝜖(𝑟(𝑎))1+𝜖 i.e.𝑣𝑛 ≤ 𝐾 = (𝐾(𝜖)𝐿1+𝜖(𝑟(𝑎))1+𝜖 )
2

1−𝜖   

Conclusion:*Tending  𝑛 → +∞ ⇒ 𝑎𝑛 → +∞ ⇒ 𝑣𝑛 =
𝑎𝑛−1

𝑢𝑛
→ +∞ (Because 𝑢𝑛 is bounded). 

* So, 𝐾 being an absolute constant, the contradiction, showing that 𝑈(𝑎) is infinite, is reached.  

6. THE ERDOS-WOODS CONJECTURE: 
Corollary7: (Erdos [30]-Woods [133] conjecture (see also [17], [93], [111], [112]) the abc-conjecture implies 

that: ∃𝑘 ∈ ℕ∗ such that: 

 ∀𝑥, 𝑦 ∈ ℕ∗∀𝑖 ∈ {0,1, … . , 𝑘 − 1}𝑟(𝑥 + 𝑖) = 𝑟(𝑦 + 𝑖) ⇒ 𝑥 = 𝑦 

Remark: 1) Paul Erdos (1913-1996) is a Hungarian mathematician. 

Proof: (of corollary 7) 

*Suppose contrarily that: ∀𝑘 ∈ ℕ∗∃𝑥𝑘 < 𝑦𝑘such that ∀𝑖 ∈ {0,1, … . , 𝑘 − 1}𝑟(𝑥 + 𝑖) = 𝑟(𝑦 + 𝑖). 

*In particular for 𝑘 ≥ 4, we have: {0,1,2,3} ⊂{0, 1, 2,…, 𝑘 − 1}. 

*We have:∀𝑖 ∈ {0,1,2,3, … , 𝑘 − 1}  𝑟(𝑥𝑘 + 𝑖) = 𝑟(𝑦𝑘 + 𝑖) ⇒ {
𝑥𝑘 + 𝑖 = ∏ 𝑝𝑖𝑗

𝛼𝑖𝑗𝑛𝑖
𝑗=1

𝑦𝑘 + 𝑖 = ∏ 𝑝𝑖𝑗
𝛽𝑖𝑗𝑛𝑖

𝑗=1

. 

Claim10: we have: ∀𝑘 ≥ 4  we have: 𝑥𝑘 ≥ 𝑘.  

Proof: (of claim10) 

*Suppose contrarily that ∃𝑘 ≥ 4  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑥𝑘 < 𝑘 i.e. 𝑥𝑘 ∈{0, 1, 2,…, 𝑘 − 1}. 

*So, by the absurd hypothesis, applied for 𝑖 = 𝑥𝑘 we have: 𝑟(𝑥𝑘 + 𝑥𝑘) = 𝑟(2𝑥𝑘) = 𝑟(𝑥𝑘 + 𝑦𝑘). 

*So:{

2𝑥𝑘 = ∏ 𝑝𝑘𝑗
𝛼𝑘𝑗𝑛𝑘

𝑗=1

𝑦𝑘 + 𝑥𝑘 = ∏ 𝑝𝑘𝑗
𝛽𝑘𝑗𝑛𝑘

𝑗=1

2𝑦𝑘 = ∏ 𝑝𝑘𝑗
𝛾𝑘𝑗𝑛𝑘

𝑗=1

⇒ ∏ 𝑝𝑘𝑗
𝛼𝑘𝑗𝑛𝑘

𝑗=1 +∏ 𝑝𝑘𝑗
𝛾𝑘𝑗𝑛𝑘

𝑗=1 = 2∏ 𝑝𝑘𝑗
𝛽𝑘𝑗𝑛𝑘

𝑗=1 . 
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⇒ ∏ 𝑝𝑘𝑗
𝛼𝑘𝑗−min (𝛼𝑘𝑗,𝛽𝑘𝑗,𝛾𝑘𝑗)𝑛𝑘

𝑗=1 +∏ 𝑝𝑘𝑗
𝛾𝑘𝑗−min (𝛼𝑘𝑗,𝛽𝑘𝑗,𝛾𝑘𝑗)𝑛𝑘

𝑗=1 = 2∏ 𝑝𝑘𝑗
𝛽𝑘𝑗−min (𝛼𝑘𝑗,𝛽𝑘𝑗,𝛾𝑘𝑗)𝑛𝑘

𝑗=1 .  

*Suppose that: ∃𝑗 ∈ {1,2, … , 𝑛𝑘} such that: 𝛽𝑘𝑗 −min (𝛼𝑘𝑗 , 𝛽𝑘𝑗 , 𝛾𝑘𝑗) ≠ 0. 

*So: 𝛾𝑘𝑗 −min(𝛼𝑘𝑗 , 𝛽𝑘𝑗 , 𝛾𝑘𝑗) = 0   𝑜𝑟  𝛼𝑘𝑗 −min(𝛼𝑘𝑗 , 𝛽𝑘𝑗 , 𝛾𝑘𝑗) = 0. 

*This being impossible in all the cases, we have: ∀𝑗 ∈ {1,2, … , 𝑛𝑘}  𝛽𝑘𝑗 −min(𝛼𝑘𝑗 , 𝛽𝑘𝑗 , 𝛾𝑘𝑗) = 0. 

*So: ∏ 𝑝𝑘𝑗
𝛼𝑘𝑗−min (𝛼𝑘𝑗,𝛽𝑘𝑗,𝛾𝑘𝑗)𝑛𝑘

𝑗=1 +∏ 𝑝𝑘𝑗
𝛾𝑘𝑗−min (𝛼𝑘𝑗,𝛽𝑘𝑗,𝛾𝑘𝑗)𝑛𝑘

𝑗=1 = 2. 

*So: ∏ 𝑝𝑘𝑗
𝛼𝑘𝑗−min (𝛼𝑘𝑗,𝛽𝑘𝑗,𝛾𝑘𝑗)𝑛𝑘

𝑗=1 = ∏ 𝑝𝑘𝑗
𝛾𝑘𝑗−min (𝛼𝑘𝑗,𝛽𝑘𝑗,𝛾𝑘𝑗)𝑛𝑘

𝑗=1 = 1. 

*So: ∀𝑗 ∈ {1,2, … , 𝑛𝑘}  𝛼𝑘𝑗 −min (𝛼𝑘𝑗 , 𝛽𝑘𝑗 , 𝛾𝑘𝑗) = 𝛽𝑘𝑗 −min(𝛼𝑘𝑗 , 𝛽𝑘𝑗 , 𝛾𝑘𝑗) = 𝛾𝑘𝑗 −min(𝛼𝑘𝑗 , 𝛽𝑘𝑗 , 𝛾𝑘𝑗) = 0. 

*That is: ∀𝑗 ∈ {1,2, … , 𝑛𝑘}  𝛼𝑘𝑗 = 𝛾𝑘𝑗 = 𝛽𝑘𝑗 . 

*So: 𝑥𝑘 = 𝑦𝑘 . 

*This being impossible, claim10 is showed. 

Claim11:  𝑟(𝑠𝑡)𝑟(gcd(s, 𝑡)) = 𝑟(𝑠)𝑟(𝑡).  

Proof: (of claim11) 

Because 𝑟(gcd(𝑠, 𝑡)) appears ones in 𝑟(𝑠𝑡) and appears twice in 𝑟(𝑠)𝑟(𝑡). 

Claim12:  We have: 𝑟(gcd(𝑦𝑘(𝑦𝑘 + 1), (𝑦𝑘 + 2)(𝑦𝑘 + 3))) ≤ 6. 

Proof: (of claim12) 

*gcd(𝑦𝑘(𝑦𝑘 + 1), (𝑦𝑘 + 2)(𝑦𝑘 + 3)) = ∏ 𝑝𝛼(𝑝)𝑝∈ℙ :  the set {𝑝 ∈ ℙ, 𝛼(𝑝) ≠ 0} being finite. 

*Let 𝑝 is a prime integer, we have: 

𝑝  divides 𝑦𝑘(𝑦𝑘 + 1) and 𝑝 divides(𝑦𝑘 + 2)(𝑦𝑘 + 3) ⇔ (𝑝 divides yk or 𝑝 divides yk +

1)and(𝑝 divides yk + 2 or 𝑝 divides yk + 3).  

 ⇔ (𝑝 divides yk and 𝑝 divides yk + 2)or (𝑝 divides yk and 𝑝 divides yk + 3)or (𝑝 divides yk +

1 and 𝑝 divides yk + 2)or(𝑝 divides yk + 1 and 𝑝 divides yk + 3). 

⇔ 𝑝 divides 2 𝑜𝑟 𝑝 divides 3 ⇔ 𝑝 = 2 𝑜𝑟 𝑝 = 3 ⇔ gcd(𝑦𝑘(𝑦𝑘 + 1), (𝑦𝑘 + 2)(𝑦𝑘 + 3)) = 2𝛼3𝛽 . 

*So: 𝑟(gcd(𝑦𝑘(𝑦𝑘 + 1), (𝑦𝑘 + 2)(𝑦𝑘 + 3))) ≤ 6. 

Claim13: We have:𝑟(𝑦𝑘(𝑦𝑘 + 1)𝑟((𝑦𝑘 + 2)(𝑦𝑘 + 3))  ≤ 6(𝑦𝑘 − 𝑥𝑘). 

Proof: (of claim13) 

*We have: ∀𝑖 ∈ {0,1,2, … , 𝑘 − 1}   ∀𝑗 ∈ {1,2, … , 𝑛𝑖}  𝑝𝑖𝑗 divides: 𝑦𝑘 − 𝑥𝑘 = (𝑦𝑘 + 𝑖) − (𝑥𝑘 + 𝑖). 

*By claim11 and claim 12, we have: 

*So: 𝑟(𝑦𝑘(𝑦𝑘 + 1))𝑟((𝑦𝑘 + 2)(𝑦𝑘 + 3)) = 𝑟(gcd((𝑦𝑘(𝑦𝑘 + 1), (𝑦𝑘 + 2)(𝑦𝑘 + 1)) 𝑟((𝑦𝑘(𝑦𝑘 + 1)(𝑦𝑘 + 2)(𝑦𝑘 + 1)) ≤ 6(𝑦𝑘 − 𝑥𝑘).  
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Claim14: ∀1 > 𝜖 > 0∃𝐾(𝜖)such  that 𝑦𝑘 < (6
1+𝜖(𝐾(𝜖))

2
)
1

1−𝜖. 

Proof: (of claim14) 

*Recall that, In particular for 𝑘 ≥ 4, we have: {0,1,2,3} ⊂{0, 1, 2,…, 𝑘 − 1}. 

*∀1 > 𝜖 > 0∃𝐾(𝜖) Such that, applying the abc-conjecture to the abc-triples: {
(𝑎, 𝑏, 𝑐) = (1, 𝑦𝑘 , 𝑦𝑘 + 1)

(𝑎, 𝑏, 𝑐) = (1, 𝑦𝑘 + 2, 𝑦𝑘 + 3)
, we 

have: 

{
𝑦𝑘 + 1 ≤ 𝐾(𝜖)(𝑟(𝑦𝑘(𝑦𝑘 + 1))

1+𝜖

𝑦𝑘 + 3 ≤ 𝐾(𝜖)(𝑟((𝑦𝑘 + 2)(𝑦𝑘 + 3)))
1+𝜖 . 

*So: 𝑦𝑘
2 ≤ (𝑦𝑘 + 1)(𝑦𝑘 + 3) ≤ (𝐾(𝜖))

2
(𝑟(𝑦𝑘(𝑦𝑘 + 1))

1+𝜖

(𝑟((𝑦𝑘 + 2)(𝑦𝑘 + 3)))
1+𝜖.  

*So, by corollary 12, we have: 

𝑦𝑘
2 ≤ (𝐾(𝜖))

2
(6(𝑦𝑘 − 𝑥𝑘))

1+𝜖 < (𝐾(𝜖))
2
(6𝑦𝑘)

1+𝜖.  

*That is: 𝑦𝑘 < (61+𝜖(𝐾(𝜖))
2
)
1

1−𝜖. 

Conclusion:  claim 10 and claim 14 give the wanted contradiction, the relation 𝑘 ≤ 𝑥𝑘 < 𝑦𝑘 < (61+𝜖(𝐾(𝜖))
2
)
1

1−𝜖 

meaning that the sequence (𝑦𝑘) is both bounded and unbounded. 

Corollary8 :( The Erdős–Woods conjecture[30]) ∃𝑘 an integer>1 such that ∀𝑎, 𝑏 integers such that 𝑎 >

1 and  𝑏 > 𝑎 + 𝑘: lcm(a,a+1,…, a+k) and lcm(b,b+1,…., b+k) have not commune prime factors, where lcm 

denotes the lower commune multiple. 

7. ERDOS CONJECTURE ON 𝟐𝒏 − 𝟏: 
Corollary 9: (Erdos conjecture [29]) the abc-conjecture implies that the greatest prime factor 𝑃(2𝑛 − 1) of 2𝑛 −

1 is such that: lim
𝑛→+∞

𝑃(2𝑛−1)

𝑛
= +∞ 

Remark: this is the Erdos conjecture conjectured in 1965. 

Remark: According to Waldschmidt [111], [112]:”in 2002, R. Murty and S. Wong [76] showed that the Erdos 

conjecture is a consequence of the abc-conjecture. In 2012, C.L. Stewart [104] showed the Erdos conjecture (in 

the more general frame of the Lucas and Lehmer sequences) by proving that:
𝑃(2𝑛−1)

𝑛
> 𝑒

ln (𝑛)

104ln (ln(𝑛))" 

Proof: (of corollary 9) 

See, for a proof, Murty R. -Wong S. (2002) [75] and L.C. Stewart (2012) [103] 

8. THE BROCARD PROBLEM:   
The Henri Brocard problem: is the resolution, in (𝑛,𝑚), of the Diophantine equation: 𝑛! + 1 = 𝑚2 

Remark: This problem was formulated independently by the French Mathematician Pierre-René-Jean-Baptiste 

Henri Brocard (1845-1922) in 1876 and 1885 (in his two papers [12], [13]) and in 1913 by the Indian 

Mathematician Srinivasa Ramanujan (1887-1920) (in his papers [86], [87]) 

Definition8: the solutions (𝑛,𝑚) ∈ ℕ2 of the Diophantine equation: 𝑛! + 1 = 𝑚2 are called Brown numbers. 
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Proposition15: The sole known Brown numbers are the pairs: (4, 5); (5, 11) and (7, 71) 

Conjecture: (of Paul Erdos [30]-S. Ramanujan [86], [87]) there no other Brown numbers other than (4, 5); (5, 

11) and (7, 71). Ramanujan Formulated the problem in the form “the number 1+n! is a perfect square for the 

values 4, 5, 7 of n. Find other values” 

Corollary 9: (Overholt (1993) [82] the abc-conjecture implies that the set 𝐵 = {(𝑛,𝑚) ∈ ℕ2, 𝑛! + 1 = 𝑚2}is 

finite. 

Proposition 16: there are no supplementary solutions to the Brocard problem for 𝑛 ≤ 109 (Berndt-Galway [7]), 

for 𝑛 ≤ 1012(Matson [67] in 1917) and for 𝑛 ≤ 1015(Epstein-Glickman [27] in 2020) 

Corollary10 :( Dąbrowski conjecture (1996) [19]) the abc-conjecture implies that: ∀𝐴 ∈ ℕ the set BA =

{(n,m) ∈ ℕ × ℕ,  𝑛! + 𝐴 = 𝑚2} is finite.  

Remark: the solution giving the largest n is 11! +182 = 63182. 

Corollary11: (Cushinge-Pascoe (2016) [18]) the abc-conjecture implies that: ∀𝐴 ∈ ℕ the set 𝐵𝐴 =

{(𝑛,𝑚) ∈ ℕ2, ∃(𝑎, 𝑏) ∈ ℕ2, such that:m = 𝑎2𝑏3 and 𝑛! + 𝐴 = 𝑚} is finite. 

Corollary12: (Luca conjecture (2002) [62]) the abc-conjecture implies that for any polynomial 𝑃 having integer 

coefficients and a degree≥ 2, the set: 𝐵𝑃 = {(𝑛,𝑚) ∈ ℕ
2, 𝑛! = 𝑃(𝑚)} is finite. 

Proof: (of corollary 12) 

Remark: (i) Berend and Osgood ([6]) showed that the density of the set of positive integers n for which there 

exists an integer m such that 𝑛!  = 𝑃 (𝑚) is zero. 

(ii) If P(X) =𝑋𝑑, the equation 𝑛!  =  𝑃(𝑚) has no solutions with |m|>1. 

(ii) If 𝑃(𝑋) = 𝑋𝑑 ± 1 𝑎𝑛𝑑 𝑑 ≥ 3, Erdos and Oblath ([28]) showed that the equation:𝑛!  = 𝑃 (𝑚) has no solutions 

with |m|>1. 

Let 𝑃(𝑋) = ∑ 𝑎𝑑−𝑘𝑋
𝑘𝑑

𝑘=0  with: 𝑎𝑖 ∈ ℕ 𝑎𝑛𝑑 𝑑 ≥ 2 and consider the Diophantine equation 𝑛! = 𝑃(𝑚)  in (𝑛,𝑚). 

Claim 15:  We have: ∃(𝑐, 𝑏𝑖 , 𝑘) ∈ ℕ
3 such that: 𝑘𝑑 + 𝑏1𝑘

𝑑−1 +⋯+ 𝑏𝑑 = 𝑐𝑛!. 

Proof: (of claim15) 

*The result is obtained by multiplication of the Diophantine equation by: 𝑑𝑑𝑎0
𝑑−1. 

*So:𝑐 = 𝑑𝑑𝑎0
𝑑−1, 𝑘 = 𝑎0𝑑𝑚  and 𝑏𝑖 = 𝑑

𝑖𝑎0
𝑖−1 for:  𝑖 = 1,2, … , 𝑑. 

Claim16: We have: ∃(𝑧, 𝑐𝑖) ∈ ℕ
2 such that: 𝑄(𝑧) = 𝑧𝑑 + 𝑐2𝑧

𝑑−2 +⋯+ 𝑐𝑑 = 𝑐𝑛!. 

Proof: (of claim16) 

*𝑏1 being a multiple of 𝑑 we have: 𝑧 = 𝑘 +
𝑏1

𝑑
∈ ℕ. 

*𝑐𝑖 are integer coefficients easily computed in terms of 𝑎𝑖 and d for 𝑖 = 2, 3, … , 𝑛. 

Claim17:  When |𝑧| is large we have: 
|𝑧|

2
< |𝑄(𝑧)| < 2|𝑧|. 
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Claim18: We have:∃𝐿1,, 𝐿2 > 0 two constants depending only on the coefficients 𝑎𝑖  for  𝑖 = 0,1,2, … , 𝑑 of 𝑃 such 

that:  |𝑑 ln(|𝑧|) − ln(𝑛!)| < 𝐿1 for:  |𝑧| > 𝐿2, when (𝑛, 𝑧) are solutions of the equation of claim 16. 

Proof: (of claim18) 

The result follows by combination of claim16 and claim17. 

Claim19: (i) We can suppose 𝐿2 > 𝐿1 (ii) So if (𝑛, 𝑧) are integers satisfying the inequalities of claim18, then: 

𝑛 > 𝑐.   

Let 𝑄(𝑋) = 𝑋𝑑 + 𝑅(𝑋). 

First Case:  if 𝑅(𝑋) = 0. 

The equation of claim 16 reduces to 𝑧𝑑 = 𝑐𝑛!. 

Claim20: The equation 𝑧𝑑 = 𝑐𝑛! has no integer solutions (𝑛, 𝑧) for 𝑛 > 2𝑐. 

Proof: (of claim20) 

*When: 𝑛 > 2𝑐: the interval ]
𝑛

2
, 𝑛[ contains a prime larger than 𝑐 which will appear at the exponent 1 in the 

product 𝑐𝑛!. 

*So: 𝑐𝑛! cannot be a perfect power. 

*So, by the inequalities of claim 18, the equation: 𝑛! = 𝑃(𝑚) has only finitely many solutions in this first case. 

Second case: if 𝑅(𝑋) ≠ 0. 

Let 𝑗 ≤ 𝑑 the largest integer with 𝑐𝑗 ≠ 0, we have: 

Claim21:  𝑧𝑗 + 𝑐2𝑧
𝑗−2 + +⋯+ 𝑐𝑗 =

𝑐𝑛!

𝑧𝑑−𝑗
. 

Let: 𝑅1(𝑋) =
𝑅(𝑋)

𝑋𝑑−𝑗
= 𝑐2𝑧

𝑗−2 + +⋯+ 𝑐𝑗 ∈ ℤ[𝑋], we have: 𝑧𝑗 + 𝑅1(𝑧) =
𝑐𝑛!

𝑧𝑑−𝑗
. 

Claim22:  ∃𝐿3, 𝐿4 ≥ 𝐿2 such that: 0 < |𝑅1(𝑧)| < 𝐿3|𝑧|
𝑗−2 when |𝑧| > 𝐿4. 

Proof: (of claim22) 

We can take: 𝐿3 = 1 + |𝑐2|. 

Claim23:  (i) if 𝐷 = gcd(𝑧𝑑 , 𝑅1(𝑧)), then all the prime divisors of 𝐷 divide 𝑐𝑗. 
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(ii) So, we have:
𝑧𝑗

𝐷
+

𝑅1(𝑧)

𝐷
=

𝑐𝑛!

𝑧𝑑−𝑗𝐷
. 

(iii) (𝐴, 𝐵, 𝐶) = (
𝑧𝑗

𝐷
,
𝑅1(𝑧)

𝐷
,
𝑐𝑛!

𝑧𝑑−𝑗𝐷
) is an abc-triple. 

Proof: (of claim23) 

The result follows easily by definition of 𝑅1(𝑧). 

Claim24: (Alborghetti [2]) We have: ∏ 𝑝𝑝≤𝑛 ≤ 4𝑛 , the product considered for all prime integers 𝑝 ≤ 𝑛 (the 

relation is true for all 𝑛 ≥ 1. 

Proof: (of claim24) 

For a proof see Alborghetti 2011 [2] pp 15-18. 

Claim25: We have: 

(i) ∀𝜖 > 0∃𝐿5 > 0 (a constant depending of 𝜖 only) such that: 
|𝑧|𝑗

𝐷
< 𝐿5(𝑟 (

𝑧𝑗𝑅1(𝑧)𝑐𝑛!

𝐷3
))1+𝜖. 

(ii) 𝑟 (
𝑧𝑗

𝐷
) ≤ 𝑟(𝑧𝑗) ≤ |𝑧|. 

(iii) 𝑟 (
𝑅1(𝑧)

𝐷
) ≤

|𝑅1(𝑧)|

𝐷
≤

𝐿3|𝑧|
𝑗−2

𝐷
. 

(iv) 𝑟 (
𝑐𝑛!

𝐷
) ≤ 𝑟(𝑐𝑛!) = 𝑟(𝑛!) = ∏ 𝑝𝑝≤𝑛 ≤ 4𝑛 (because : 𝑐 > 𝑛). 

(v) 𝑟 (
𝑧𝑗𝑅1(𝑧)𝑐𝑛!

𝐷3
) ≤ 𝑟 (

𝑧𝑗

𝐷
) 𝑟 (

𝑅1(𝑧)

𝐷
) 𝑟 (

𝑐𝑛!

𝐷
) ≤

𝐿3|𝑧|
𝑗−14𝑛

𝐷
. 

(vi) For 𝐿6 = 𝐿5𝐿3
1+𝜖, we have: 

|𝑧|𝑗

𝐷
≤ 𝐿6(

|𝑧|𝑗−14𝑛

𝐷
)1+𝜖. 

(vii) |𝑧|𝑗 ≤ 𝐿6
|𝑧|(𝑗−1)(1+𝜖)4(1+𝜖)𝑛

𝐷𝜖
 or |𝑧|1+𝜖−𝜖𝑗 ≤ 𝐿64

𝑛(1+𝜖). 

(viii) Taking 𝜖 =
1

2𝑑
≤

1

2j
, L7 = 2(1 + ϵ) ln(4) , L8 = 2ln (L6), 𝐿9 = 𝑑𝐿7 𝑎𝑛𝑑𝐿10 = 𝑑𝐿8 we have: 

|𝑧|
1

2 ≤ |𝑧|1+𝜖−𝜖𝑗 ≤ 𝐿64
𝑛(1+𝜖) or ln(|𝑧|) < 𝐿7𝑛 + 𝐿8 or 𝑑 ln(|𝑧|) ≤ 𝑛𝐿9 + 𝐿10. 

(ix) If 𝐿11 = 𝐿1 + 𝐿10, we have: |𝑑 ln(|𝑧|) − ln(𝑛!)| < 𝐿1 for |𝑧| > 𝐿2 ⇒ ln(𝑛!) ≤ 𝐿1 + 𝑑 ln(|𝑧|) ≤

𝑛𝐿9 + 𝐿11. 

Proof: (of claim25) 

(i)The result follows by application of the abc-conjecture to the abc-triple(𝐴, 𝐵, 𝐶) = (
𝑧𝑗

𝐷
,
𝑅1(𝑧)

𝐷
,
𝑐𝑛!

𝑧𝑑−𝑗𝐷
).  

The assertions (ii)-(ix) follow successively. 
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Claim26: (Stirling formula for approximating 𝑛!)[121]∀𝑛 ∈ ℕ∗ √2𝜋𝑛
𝑛+

1

2𝑒−𝑛 ≤ 𝑛! ≤ 𝑒𝑛𝑛+
1

2𝑒−𝑛 . 

Claim27: 𝑛 < 𝐿12 and |𝑧| < 𝐿13. 

Proof: (of claim 27) 

*The result follows by claim26 and the inequality: |𝑑 ln(|𝑧|) − ln(𝑛!)| < 𝐿1 for |𝑧| > 𝐿2. 

*𝑛𝐿9 + 𝐿11 ≥ ln(𝑛!) ≥ ln(√2𝜋) + (𝑛 +
1

2
) ln(𝑛) − 𝑛. 

*That is: 𝐿11 − ln(√2𝜋) ≥ 𝑛(ln(𝑛) − 1 − 𝐿9). 

*So, for: 𝑛 ≥ 𝑒2+𝐿9 , we have: 𝑛 ≤ 𝐿12 = 𝐿11 − ln (√2𝜋) and 𝑑 ln(|𝑧|) ≤ 𝑛𝐿9 + 𝐿10 ≤ 𝐿9𝐿12 + 𝐿10 or |𝑧| ≤

𝑒
𝐿9𝐿12+𝐿10

𝑑 = 𝐿13. 

Conclusion: (i) The equation 𝑛! = 𝑃(𝑚) has only finitely many integer solutions (𝑛,𝑚). 

(ii)Corollaries 9, 10 and 11 follow from corollary 12. 

Remark: For more details on Brocard Problem See Gérardin 1906 [39]. 

9. THE MORDELL CONJECTURE:  
Definition9: a plane projective algebraic curve of degree n is a set of points 𝑀(𝑥, 𝑦) whose coordinates satisfy an 

algebraic equation  𝑃𝑛(𝑥, 𝑦) = 0 where 𝑃𝑛(𝑥, 𝑦) is a polynomial of degree n. 

Definition10: the order of a plane projective algebraic curve E is the number of intersection points of this curve 

with any line lying in the plane of this curve.  

Definition11: If E is a plane projective algebraic curve defined by an irreducible homogenous polynomial of 

degree m, then its genus 𝑔 =
(𝑚−1)(𝑚−2)

2
− 𝑑 where d is a positive integer which is the measure of the smoothness 

of E. If E has only ordinary double points, d is simply the number of singular points. In particular the genus of a 

plane smooth projective curve is: 𝑔 =
(𝑚−1)(𝑚−2)

2
. For a plane singular projective curve of degree m having 

multiple points P of multiplicity 𝑟𝑃 in which it have𝑟𝑃 distincts tangents the genus is calculated as 𝑔 =
(𝑚−1)(𝑚−2)

2
− ∑

𝑟𝑃(𝑟𝑃−1)

2𝑃 . 

Corollary 13: (The Mordell conjecture [75]) Let E an algebraic curve defined on ℚ of genus 𝑔 ≥ 2, then E (ℚ) 

is finite. 

Remark: Consider the equation 𝑃(𝑥, 𝑦) = 0 with 𝑃 a polynomial having rational coefficients. The problem is the 

find the number N of solutions of this equation in Q. N depends of the genus g of the curve C associated to this 

equation (we can define the genus of C as the number of possibilities to cup the cuve without having  two   distinct 

parts): 

*If:  g=0: N=0 or N=∞. 

*if: g=1: N=0 or C is elliptic. 
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*if: g≥ 2: Mordell conjectured that there are only finitely many solutions. 

Example: The curve 𝑦2 = 𝑥5 + 𝑥 + 1 in the plane has genus 2. The Mordell conjecture says that: 𝑥5 + 𝑥 + 1 is 

a square of a rational number for only finitely many rational values of 𝑥.  

Remark: (1) Louis Joel Mordell (1888-1972) is a British mathematician. 

(2)This conjecture was announced by Mordell in 1922 (see [75]). 

(3) This conjecture was proved in general by Gerd Faltings 1983(see [33]). 

(4) Vojta gives a proof a long of the lines of Diophantine approximation (see [110]). 

Proof: (of corollary13) 

For the deduction of the Mordell conjecture, from the abc-conjecture, see Machiel Van Frankenhuysen [36] and 

Emeline Crouseilles and Alexandre Lardeur [17]. 

The principle of the proof is as follows: 

1. we construct  a Belyi function having certain particularities using the Belyi theorem: 

Theorem 3:(Belyi theorem [5] ): if 𝐶 is an algebraic curve defined on ℚ, and if Σ is a subset of algebraic points 

of 𝐶, then it exists an application 𝑓: 𝐶 → ℙ1 defined on ℚ associated to Σ such that f is uniquely ramified on 0, 1, 

∞ and 𝑓(Σ) ⊆ {0,1,∞}. 

2. *we use the abc-conjecture to prove that we have two cases: 

First case:𝑥 ∈ 𝐶(ℚ) is sanded by 𝑓 on 0, 1,∞. 

Or 

Second case: The height of 𝑓(𝑥) is bounded by an explicit constant. 

*Recall that: 

**A valuation: on ℚ Is an application 𝑣:ℚ → ℝ ∪ {−∞} such that: 

(i)𝑣(𝑥) = −∞ ⇔ 𝑥 = 0. 

(ii)∀𝑥, 𝑦 ∈ ℚ∗ 𝑣(𝑥𝑦) = 𝑣(𝑥) + 𝑣(𝑦). 

(iii)∃𝐾 a constant such that ∀𝑥, 𝑦 ∈ ℚ: 𝑣(𝑥 + 𝑦) ≤ 𝐾 +max(𝑣(𝑥), 𝑣(𝑦)). 

**Valuation p-adic on ℚ: 𝑣𝑝(𝑥) = −𝑜𝑟𝑑𝑝(𝑥)ln (𝑝) and 𝑣∞(𝑥) = ln(𝑥). 

Where, if  𝑝 is prime,  𝑜𝑟𝑑𝑝(𝑥) is the power of the factor 𝑝 in 𝑥. 

We have: {
𝑣𝑝(𝑥 + 𝑦) ≤ max (𝑣𝑝(𝑥), 𝑣𝑝(𝑦))

𝑣∞(𝑥 + 𝑦) ≤ ln(2) + max (𝑣∞(𝑥), 𝑣∞(𝑦))
. 

The trivial valuation is defined by: {
𝑣(0) = −∞

𝑣(𝑥) = 0 𝑖𝑓 𝑥 ≠ 0
. 

The trivial valuation and the p-adic valuations represent the set 𝑉 of valuations on ℚ. 
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We have: ∑ 𝑣(𝑥) = 0𝑣∈𝑉 . 

**The Logarithmic height of a point: for a point 𝑥 = (𝑥0: … : 𝑥𝑛) ∈ ℙ
𝑛(ℚ), we define its logarithmic height 

by: ℎ(𝑥) = ∑ max(𝑣(𝑥0): … : 𝑣(𝑥𝑛)) .𝑣∈𝑉  

We have: ∀𝐶 > 0 𝑡ℎ𝑒 𝑠𝑒𝑡 {𝑥 = (𝑥0: … : 𝑥𝑛) ∈ ℙ
𝑛(ℚ), ℎ(𝑥) ≤ 𝐶} is finite. 

We use the below form of the ABC conjecture in ℙ2: 

**abc-conjecture in ℙ2:∀𝜖 > 0∃𝐾(𝜖) > 0  such that: ∀𝑃 = (𝑎: 𝑏: 𝑐) ∈ ℙ2 lying on the line 𝑎 + 𝑏 = 𝑐 with 

𝑎𝑏𝑐 ≠ 0, we: have:max(ℎ(𝑃) − 𝑟(𝑃), 0) ≤ 𝜖ℎ(𝑃) + 𝐾(𝜖). 

Where: ℎ(𝑝) = ℎ(𝑎: 𝑏: 𝑐) = ∑ max (𝑣(𝑎), 𝑣(𝑏), 𝑣(𝑐))𝑣  𝑣 running over all valuations of ℚ and𝑟(𝑝) =

𝑟(𝑎: 𝑏: 𝑐) = ∑ ln (𝑝)p such that card{vp(a),vp(b),vp(c)}≥2 , 𝑐𝑎𝑟𝑑(𝐴) denoting the number of elements of the set 𝐴.  

10. THE SZAPIRO CONJECURES: 
Remark:  Lucien Szpiro is a French Mathematician born in 1941 and dead in 2020. 

Definition12: In mathematics, we call cusp, a particular type of singular points on a curve. In the case of a curve 

having the equation:𝑓(𝑥, 𝑦) = 0, the cusps havent the below properties: 

1.  𝑓(𝑥, 𝑦) = 0 

2. 
𝜕𝑓

𝜕𝑥
(𝑥, 𝑦) =

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦) = 0 ; 

3. The hessienne matrix (composed by the second derivatives) has a null determinant. 

Definition13 :( 1) (i) a cubic curve E on ℚ  is an equation of the form: 

                                                 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6,  

Where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ ℚ are not uniquely determined by the curve. 

(ii) The correspondent form associated to a possible value of 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ ℚ is called a model of E. 

(2) This curve is called the Weierstrass normal equation. 

(3)(i) If:

{
 

 
𝑏1 = 𝑎1𝑎3 + 2𝑎4
𝑏2 = 𝑎1

2 + 4𝑎2
𝑏6 = 𝑎3

2 + 4𝑎6
𝑏8 = 𝑎1

2𝑎6 − 𝑎1𝑎3𝑎4 + 4𝑎2𝑎6 + 𝑎2𝑎3
2 − 𝑎4

2

 the number ∆(𝐸) = −𝑏2
2𝑏8 − 8𝑏4

3 − 27𝑏6
2 + 9𝑏2𝑏4𝑏6 is 

called the discriminate of the curve E. 

(ii) ∆ depends of the form of the equation of E. 

(4) The below assertions are equivalent: 

(i) E is elliptic.  

(ii) E is liss. 

(iii) The function A(x) =𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6 has not multiples roots on ℚ̅ (the set of algebraic numbers). 
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(iv) We can define a tangent to the curve in any point ( 𝑥, 𝑦) ∈ ℚ̅ × ℚ̅. 

(v) The normal Weierstrass equation is not singular. 

(vi) The normal Weierstrass equation is without any cusp and without any double point.  

 Example: 0 is a cusp of the equation 𝑦2 = 𝑥3 and is a double point of the equation 𝑦2 = 𝑥2(𝑥 + 1).  

(vii)∆(𝐸) ≠ 0. 

(viii) The curve 𝑃(𝑥, 𝑦) = 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 − 𝑥
3 − 𝑎1𝑥

2 − 𝑎4𝑥 − 𝑎6 is liss. 

(ix) ∀(𝑥, 𝑦) ∈ ℚ̅ × ℚ̅  ∶ The vector (
𝜕𝑃

𝜕𝑥
(𝑥, 𝑦),

𝜕𝑃

𝜕𝑦
(𝑥, 𝑦)) ≠ (0,0).  

(x) ∀(𝑥, 𝑦) ∈ ℚ̅ × ℚ̅: 𝑎1𝑦 − 3𝑥
2 − 2𝑎1𝑥 − 𝑎4 ≠ 0 𝑜𝑟 2𝑦 − 𝑎1𝑥 + 𝑎3 ≠ 0. 

Remark: (1) The curve E (ℚ):  𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6 gives, via the bijection:(𝑥, 𝑦) →

(𝑋, 𝑌) = (𝑥, 𝑦 +
𝑎1

2
𝑥 +

𝑎3

2
), the curve 𝐸′(ℚ): 𝑌2 = 𝑋3 +

𝑏2

4
𝑋2 +

𝑏4

2
𝑋 +

𝑏6

4
  with {

𝑏2 = 4𝑎2 + 𝑎1
2

𝑏4 = 2𝑎4 + 𝑎1𝑎3.

𝑏6 = 4𝑎6 + 𝑎3
2

 

We have: E (ℚ) elliptic ⇔ 𝐸′(ℚ)elliptic. 

(2)  The curve E (ℚ):  𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥
3 + 𝑎2𝑥

2 + 𝑎4𝑥 + 𝑎6 gives, via the bijection: (𝑥, 𝑦) → (𝑋 = 𝑥 +
𝑎1
2+4𝑎2

12
, 𝑌 = 𝑦 +

1

2
(𝑎1𝑥 + 𝑎3)) gives the curve 𝐸′′(ℚ): 𝑌2 = 𝑋3 + 𝑐4𝑋 + 𝑐6 with: 

{
 

 𝑐4 = 𝑎4 +
𝑎1𝑎3
2

− 3(
𝑎1
2 + 4𝑎2
12

)2

𝑐6 = 𝑎6 +
𝑎1
2

4
− (

𝑎1
2 + 4𝑎2
12

)3 −
𝑎1
2 + 4𝑎2
12

(𝑎4 +
𝑎1𝑎3
2

− 3(
𝑎1
2 + 4𝑎2
12

)2)

 

(6) (i) For an elliptic curve: the number 𝐽(𝐸) =
(𝑏2
2−24𝑏4)

3

∆
 is called the j-invariant of E. 

(ii)  𝐽(𝐸)is independent of the form of the equation of E. 

(7) An elliptic curve has 3 “natural and interesting “different models: 

(i) A model defined by a Weierstrass equation   of the form: 𝑦2 = 𝑥3 + 𝑐4𝑥 + 𝑐6, having the discriminate ∆(𝐸) =
−16(4𝑐4

3 + 27𝑐6
2) with 𝑐4, 𝑐6 ∈ ℤ. 

(ii) The minimal model i.e. if ∆(𝐸) is its discriminate, any other equation of E with integral coefficients will 

have a discriminate ∆= 𝑢12∆(𝐸) with 𝑢 ∈ ℤ. 

(iii)The Néron model (For the definition and some properties see [124]). 

(5)* Denote, for 𝑝 ∈ ℙ (a prime integer), by 𝐸𝑝 the reduction, modulo p, of the elliptic curve E. 
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*So: in the prime field  ℤ/𝑝ℤ: 𝐸𝑝 is defined by the equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏,  where: {

𝑎, 𝑏 ∈ ℤ
𝑝 ∈ ℙ (𝑝 is prime)

0 < |𝑎| < 𝑝

0 < |𝑏| < 𝑝

. 

*We say that: 

(i)That E has a good reduction in p if 𝐸𝑝 is liss (i. e. p das not divide ∆(𝐸) =

the discriminate of the original curve). 

(ii) That E has a bad reduction in p if 𝐸𝑝  is not liss (i.e. p divides ∆(𝐸)). 

(iii) That E has an additive reduction in p if 𝐸𝑝 has a knot (i.e. if this model is singular modulo p and the singularity 

has a single tangent) (i.e. p divides 𝑐4 and∆(𝐸)). 

(iv) That E has a multiplicative reduction in p if 𝐸𝑝 has a pointe (i.e. if this model is singular modulo p with two 

distinct tangents) (i.e. p divide ∆(𝐸) and das not divide 𝑐4): 

*if the two tangents are defined on the finite Field 𝔽𝑝 = ℤ/𝑝ℤ  we say that the multiplicative reduction is 

deployed. 

*if the two tangents are not defined on 𝔽𝑝 = ℤ/𝑝ℤ we say that the multiplicative reduction is not deployed. 

Remark:  if we reduce the coefficient of the elliptic curve E modulo p we obtain an elliptic curve 𝐸𝑝 defined on 

the Field 𝔽𝑝 = ℤ/𝑝ℤ. The group 𝐸𝑝=E ( 𝔽𝑝) is a cyclic group isomorphic to  ℤ/𝑟ℤ (with 𝑟=cardinal (𝐸𝑝)) or is 

the product of two cyclic groups isomorphic to ℤ/𝑟ℤ × ℤ/𝑞ℤ  (with:  𝑟dividing 𝑞 and 𝑟 dividing: 𝑝 − 1). 

(6)(i) The conductor of the elliptic curve E is defined by 𝑁(𝐸) = ∏ 𝑝𝑛(𝐸,𝑝)𝑝∈ℙ . 

Where: 𝑛(𝐸, 𝑝) = {

0 if 𝐸 has a good reduction in 𝑝
1 if 𝐸 has multiplicative reduction in 𝑝

2 + 𝛿(𝐸, 𝑝)if 𝐸 has an additive reduction in 𝑝
  with:  𝛿(𝐸, 𝑝) = {

0 𝑖𝑓 𝑝 ≥ 5
≤ 8 𝑖𝑓 𝑝 = 2

≤ 5 𝑖𝑓 𝑝 = 3
. 

For example for E (ℚ): y2 + y = x3 − x2 + 2x − 2, the primes of bad reduction are p=5 and 7. The reduction at 

p=5 is additive, while the reduction at p=7 is multiplicative. Hence N (E) =25×7=175. 

(ii) We say that E is semi-stable in the prime p if 𝑛(𝑝, 𝐸) = 0 or 1.  

(iii) We say that E is semi-stable if it is semi-stable in any prime number p i.e. if its conductor is without square 

factor. 

Example:  Let (𝑎, 𝑏, 𝑐) ∈ ℤ∗
3𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

gcd(𝑎, 𝑏, 𝑐) = 1
𝑎 + 𝑏 + 𝑐 = 0

𝑎 ≡ −1 [𝑚𝑜𝑑𝑢𝑙𝑜 4]

𝑏 ≡ 0 [𝑚𝑜𝑑𝑢𝑙𝑜16]

  the elliptic curve defined on ℚ having the 

equation 𝑦2 = (𝑥 + 𝑏)(𝑥 − 𝑎)𝑥 isomorphic to the elliptic curve having the equation 𝑦2 = (𝑥 − 𝑒1)(𝑥 − 𝑒2)(𝑥 −

𝑒3) with {

𝑎 = 𝑒2 − 𝑒3
𝑏 = 𝑒3 − 𝑒1
𝑐 = 𝑒1 − 𝑒2

  (so: E is invariant if a,b,c are permuted circularly), giving by the variable change 

{
𝑥 = 4𝑋

𝑦 = 8𝑌 + 4𝑋
 the new Weierstrass equation 𝑌2 + 𝑋𝑌 = 𝑋3 +

𝑏−𝑎−1

4
𝑋2 −

𝑎𝑏

16
𝑋 with integral coefficients, has the 
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minimal discriminate ∆(𝐸) = (
𝑎𝑏𝑐

16
)2, has the conductor 𝑓(𝐸) = 𝑟 (

𝑎𝑏𝑐

16
) = ∏ 𝑝

𝑝∈ℙ,𝑝 𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 
𝑎𝑏𝑐

16

  and has the 

invariants 𝑐4 = −(𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐) and 𝑐6 =
(𝑏−𝑎)(𝑐−𝑏)(𝑎−𝑐)

2
. 

Remark:  (1) gcd (𝑐4, ∆) = 1 ⇒the new equation defines a minimal model of E, so E is an elliptic curve semi-

stable of good reduction in a prime integer 𝑙 if  𝑙 das not divide 
𝑎𝑏𝑐

16
 and has bad reduction of multiplicative type if 

𝑙 divides 
𝑎𝑏𝑐

16
. 

(2) If we have not: {

𝑎 ≡ −1[modulo4] , 𝑏 ≡ 0[modulo16]

𝑏 ≡ −1[modulo4], 𝑐 ≡ 0[modulo16]

𝑐 ≡ −1[modulo4], 𝑎 ≡ 0[modulo16]
 ⇒ the equation 𝑦2 = (𝑥 + 𝑏)(𝑥 − 𝑎)𝑥 is minimal 

⇒the curve is not semi-stable in p=2. 

Corollary 14: (Szpiro conjecture [107], [108]) (announced in 1980): ∀𝜖 > 0∃𝐶(𝜖) such that ∀𝐸 an elliptic curve 

defined on ℚ with minimal discriminate ∆ and conductor 𝑓, we have: |∆|≤ 𝐶(𝜖)𝑓6+𝜖. 

Proof: (of corollary 14) 

For a proof see A.Nitaj [79], [80]. 

Corollary 15: (The Generalized Szpiro conjecture [107], [108]): ∀𝜖 > 0∀𝑀 > 0∃𝐾(𝜖,𝑀) > 0 such that: ∀𝑥, 𝑦 ∈

ℤ 𝐷 = 4𝑥3 − 27𝑦2 ≠ 0 and the greatest prime factor of 𝑥, 𝑦 is bounded by 𝑀 ⇒ max( |𝑥|3, 𝑦2, 𝐷) < 𝐾(𝜖,𝑀)𝑟(𝐷)6+𝜖 . 

Corollary 16: (The modified Szpiro conjecture [107], [108]) ∀𝜖 > 0∃𝐶(𝜖) > 0 such that ∀𝐸 an elliptic curve 

defined on ℚ with invariants C4, C6 and conductor f, we have: 

max (|𝐶4|
3, |𝐶6|

2) ≤ 𝐶(𝜖)𝑓6+𝜖 

Corollary 17:  (Lang’s [59], [60] conjecture giving a lower bound for the height of a non-torsion rational point 

of an elliptic curve) let 𝐸 be an elliptic curve defined on ℚ,  𝐸(ℚ) be the additive group of all the rational points 

on the curve E. For q 𝐸(ℚ), the canonical height of q is:ℎ̅(𝑞) = lim
𝑛→+∞

ℎ(2𝑛𝑞)

4𝑛
, where ℎ(𝑞) = ℎ(𝑥(𝑞)) is the 

logarithmic height of q, defined by: ℎ (
𝑠

𝑡
) = ln (max(|𝑠|, |𝑡|)) for 

𝑠

𝑡
∈ ℚ in the lowest forms is the logarithmic 

height of s/t: the Lang conjecture says that: for any elliptic curve, and any q ℚ of infinite order, we have: 

ℎ̅(𝑞) ≥ 𝐶1 ln(∆(𝐸)) + 𝐶2 

With: ∆(𝐸) is the discriminate of the curve and C1, C2 are absolute constants. 

Remark: (1) Serge Lang (1927-2005) is a French-American Mathematician. 

(2)See Silverman 2010 [99] for more details about Lang’s conjecture. 

11. Cochrane/Dressler conjecture about the gaps between primes: 
Corollary 18: (Cochrane-Dressler 1999 [16]) ∀𝜖 > 0∃𝐾(𝜖) > 0 such that ∀(𝑎, 𝑐) positive integers, we have: 

                                {
𝑎 < 𝑐

𝑎, 𝑏 have the same prime factors ⇒ 𝑐 − 𝑎 ≥ 𝐾(𝜖)𝑎
1

2
−𝜖

 

Remark:  Cochrane and Dressler noted in [16] that the exponent: “ 
1

2
− 𝜖" cannot be improved to the 

exponent: "
1

2
". Indeed they found an infinite family of pairs of positive integers a<c having the same prime factors 
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such that:  𝑐 − 𝑎 < √2ln (2)
𝑎
1
2

(ln(𝑎))
1
2

, by considering  the integers:𝑎1=2(2𝑘 − 1)2and 𝑐1 = 2𝑘+1(2𝑘 − 1), (for k 

any positive integer) having the same prime factors and 𝑐1 − 𝑎1=√2𝑎1

1

2. Suppose that k=23𝑗−1  with j an integer 

≥ 2. We have 3𝑗 divides 2𝑘 − 1 and 3𝑗−1 divides 𝑐1and 𝑎1. So, we obtain the smallest integers:𝑎 =
𝑎1

3𝑗−1
 and 𝑐 =

𝑐1

3𝑗−1
 having the same prime factors and satisfying: −𝑎 =

√2𝑎
1
2

3
𝑗−1
2

=
2𝑎

1
2

√𝑘
 . So:𝑐 − 𝑎 < √2ln (2)

𝑎
1
2

(ln(𝑎))
1
2

.  

Proof: (of corollary 18) 

*Suppose that a<c are positive integers having the same prime factors. Rearranging we get:𝑏 = 𝑐 − 𝑎. 

*Let  𝑃 = 𝑟(𝑎) = 𝑟(𝑐) and 𝑑 =  gcd (𝑎, 𝑏) = gcd(𝑎, 𝑐) = gcd(𝑏, 𝑐) 

*Then we have: 
𝑎

𝑑
+

𝑏

𝑑
=

𝑐

𝑑
   with: gcd (

𝑎

𝑑
,
𝑏

𝑑
,
𝑐

𝑑
) = 1. 

*We have: 𝑟 (
𝑎

𝑑

𝑏

𝑑

𝑐

𝑑
) ≤ 𝑟(𝑎𝑐)𝑟 (

𝑏

𝑑
) ≤ 𝑃

𝑏

𝑑
≤

𝑏é

𝑑
.  

          (We have: 𝑃 ≤ 𝑏 because:   𝑃 divides 𝑏 since 𝑃 divides 𝑎 and 𝑃 divides 𝑐 imply 𝑃 divides 𝑏 = 𝑐 − 𝑎). 

*By the abc-conjecture, we have:   
𝑐

𝑑
≤ 𝐶(𝜖)(

𝑏2

𝑑
)1+𝜖. 

*So: 𝑐 ≤ 𝐶(𝜖)𝑏2(1+𝜖). 

*Finally: 𝑏 ≥ 𝐶′(𝜖)𝑐
1

2
−𝜖 ≥ 𝐶′(𝜖)𝑎

1

2
−𝜖. 

*As a consequence, we can deduce the below results: 

**Corollary 19: Between any two positive integers having the same prime factors there is a prime. 

Cochrane and Dressler state in [16]: 

**Corollary 20: if the prime factors of 𝑎 and 𝑐 are restricted to a fixed finite set 𝑆 of prime, then: 

                                                                ∃𝐾(𝑆) > 0   such that 𝑐 − 𝑎 ≥
𝑎

(ln(𝑎))𝐾(𝑆)
  

12. SEPARATION BETWEEN PERFECT POWERS CONJECTURES: 

(i) THE STRONG AND THE WEAK HALL’S CONJECTURES: 
Corollary 21: (Strong Marshall Hall's conjecture [48])∃𝐶 > 0 such that: ∀𝑥, 𝑦 ∈ ℤ∗ 𝑦2 ≠ 𝑥3 ⇒ |𝑦2 − 𝑥3| >

𝐶|𝑥|
1

2. 

Remark: 

1) Marshall Hall Jr. (1910-1990) is an American mathematician who made significant contributions to group 

theory and combinatorics. 

2) Marshall announced his conjecture in 1970. 

3) The conjecture arose from consideration of the Mordell equation in the theory of integers points on elliptic 

curves. 
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4) Marshall suggested that one could take: 𝐶 =
1

5
. This is consistent with all the known data at 1970. 

5)  Noam Elkies showed [26], in 1998, that Hall’s conjecture requires 𝐶 being 

<
1

50
 (which is roughly 10 times smaller than 

1

5
 suggested by Hall)  by noting that: 

                                4478849284284020423079182 - 58538865167812233 = -1641843: 

Corollary 22: (Weak form of Hall’s conjecture) we have: 

∀𝜖 > 0∃𝐶(𝜖) > 0 ∀𝑥, 𝑦 ∈ ℤ∗ 𝑦2 ≠ 𝑥2 ⇒ |𝑦2 − 𝑥3| > 𝐶(𝜖)|𝑥|
1
2
−𝜖

 

Remark: According to Wikipedia [131]: the weak form of Hall's conjecture was stated by Stark and Trotter 

around 1980. 

Proof: (of corollary 22) 

See Schmidt, Wolfgang M. (1996) [90] and Jerzy Browkin (2012) [15] (p 86) where he shows that the weak Hall 

conjecture is a consequence of a weak form of the abc-conjecture.   

Remark: 1) In 1982 Danilov [20] showed that:"|𝑥|
1

2” in the Marshall conjecture, cannot be replaced by: "|𝑥|
1

2
+𝛿" 

for any 𝛿 > 0. 

2) Davenport [22] showed, in 1965, the below analogue of Hall’s conjecture in the case of polynomials:  

Proposition 17: (Hall’s Conjecture for polynomials) if f(t) and g(t) are nonzero polynomials 

over C, then: (g(t))3 ≠ (f(t))2 in C[t]⇒ deg ((𝑔(𝑡))
2
− (𝑓(𝑡))

3
) ≥

1

2
deg(𝑓(𝑡)) + 1. 

A generalization to other perfect powers is Pillai's conjecture. 

(ii) THE PILLAI’S-TIJDEMAN CONJECTURES: 
Corollary 23 :( Tijdeman generalized conjecture) [109] we have: 

             ∀𝑘 ∈ ℕ∗ The set 𝑇𝑘 = {(𝑥, 𝑦,𝑚, 𝑛) ∈ ℕ
∗ × ℕ∗ × (ℕ∗ − {1}) × (ℕ∗ − {1}), 𝑦𝑚 = 𝑥𝑛 + 𝑘} is finite 

Remark: 1) Robert Tijdeman is a Dutch mathematician born in 1943.  

2) Tijdeman theorem, proved in 1976, answers the case k = 1. 

3) Tijdeman announced this conjecture in [109]. 

Corollary 24 :( Pillai's conjecture) [83] we have: 

  ∀𝐴, 𝐵, 𝑘 ∈ ℕ∗ the set 𝑃𝐴,𝐵,𝑘 = {(𝑥, 𝑦,𝑚, 𝑛)ℕ∗ × ℕ∗ × (ℕ∗ − {1}) × (ℕ∗ − {1}), 𝐵𝑦𝑚 = 𝐴𝑥𝑛 + 𝑘} is finite. 

Remark: 1) S. S. Pillai is an Indian mathematician born in 1901 and dead in 1950. 

2) Pillai announced his conjecture in 1931[83]. 

3) The Pillai conjecture says that: “in the sequence of perfect powers the difference between two consecutive 

terms tends to infinity” or equivalently that: “letting k a positive integer, then the Diophantine equation 𝑦𝑚 −

𝑥𝑛 = 𝑘 in the integers: 𝑥, 𝑦, 𝑛,𝑚 ≥ 2, has only finitely many solutions 𝑥, 𝑦, 𝑛,𝑚". 

(iii) THE LANG-WALDSCHMIDT CONJECTURE: 
The abc-conjecture implies the following stronger versions of Pillai’s conjecture called Lang-Waldschmidt 

conjecture: 
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Corollary 25: (Lang [58]-Waldschmidt [111], [112] conjecture) ∀𝜖 > 0 ∃𝐾(𝜖) > 0 such that: 

                                               𝑥𝑝 ≠ 𝑦𝑞 ⇒ |𝑥𝑝 − 𝑦𝑞| ≥ 𝐾(𝜖)(max(𝑥𝑝, 𝑦𝑞))
1−

1

𝑝
−
1

𝑞
−𝜖

  

Proof: (of corollary 25)  

See in Serge Lang [59] the introduction of chapters X and XI.  

Remark: 1) in the special case:𝑝 = 3, 𝑞 = 2, the Lang-Waldschmidt conjecture reads:  

                                                    𝑥3 ≠ 𝑦2 ⇒ |𝑥3 − 𝑦2| ≥ 𝐾(𝜖)(max(𝑥3, 𝑦2))
1

6
−𝜖

 

2) in 1971, Marshall Hall Jr proposed the stronger conjecture below which does not follow from the abc-conjecture 

(See [36] and [49]): 

Corollary 26 :( Strong Hall conjecture) ∃𝐾 > 0 an absolute constant such that: 

                                                         𝑥3 ≠ 𝑦2 ⇒ |𝑥3 − 𝑦2| ≥ 𝐾(max(𝑥3, 𝑦2))
1

6 

In [49] Marshall Hall discusses the values of 𝐾. In This sense L.V.Danilov (See [20], [52]) proved that: 

Proposition 18:  The inequality 0< |𝑥3 − 𝑦2| < 0.971√|𝑥| has infinitely many solutions in integers: 𝑥, 𝑦. 

(iv) BEUKERS-STEWART CONJECTURE: 
According to F. Beukers and C.L Stewart in [8]: “The M. Hall. Jr conjecture maybe too optimistic”. They, then 

conjecture: 

Corollary 27: (Beukers-Stewart conjecture [8]): Let 𝑝, 𝑞 coprime integers with 𝑝 > 𝑞 ≥ 2, then:∀𝐾 > 0, there 

exist infinitely many positive integers 𝑥, 𝑦 such that: |𝑥𝑝 − 𝑦𝑞| < 𝐾(max(𝑥𝑝, 𝑦𝑞))
1−

1

𝑝
−
1

𝑞 

Proposition 19: (Vojta, P. [110]) we have: 

(a) The below conjectures are equivalent: 

(1) The abc-conjecture. 

(2) The Hall-Lang-Waldschmidt-Szpiro conjecture. 

(3) Generalized Szpiro conjecture. 

(b) The Hall-Lang-Waldschmidt-Szpiro conjecture ⇒The Hall-Lang-Waldschmidt conjecture⇒Hall conjecture. 

(c) Generalized Szpiro conjecture⇒Szpiro conjecture⇒asymptotic Fermat. 

13. FINITELY MANY PERFECT POWERS OF AN INTEGRAL POLYNOMIAL HAVING 

AT LEAST THREE SIMPLE ZEROS: 
Corollary 28: The abc-conjecture implies that for an integral polynomial P(x) we have: 

           P has at least three simple zeros⇒ P has only finitely many perfect powers for all integers x. [120]     

14. BOUNDING ABOVE C BY A NEAR-LINEAR FUNCTION OF THE RADICAL OF 

ABC: 
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Corollary 29: The abc-conjecture implies that c can be bounded above by a near-linear function of the radical of 

abc. Bounds are known that are exponential. Specifically, the following bounds have been proven: 

(1) Stewart and Tijdeman inequality (See [100]):  𝑐 < 𝑒𝐾1(𝑟(𝑎𝑏𝑐)))
15

  

(2) Stewart and Yu first inequality(See [101]): 𝑐 < 𝑒𝐾2(𝑟(𝑎𝑏𝑐)))
2
3+𝜖

  

(3) Stewart and Yu second inequality (See[102]) :𝑐 < 𝑒𝐾3(𝑟(𝑎𝑏𝑐)))
1
3+𝜖

  

REMARK: In these bounds, 𝐾1, 𝐾2 and 𝐾3 are constants that depend on 𝜖 (in an effectively computable way) 

but not on 𝑎, 𝑏, or 𝑐. The bounds apply to any triple for which 𝑐 > 2. 

15. LAISHRAM-SHOREY RESOLUTION OF THE NAGELL-LJUNGGREN EQUATION 

VIA THE ABC-CONJECTURE: 
Definition14: (the Nagell [77]-Ljunggren [61] equation) we call the Nagell-Ljunggren equation, the equation: 

𝑦𝑞 =
𝑥𝑛−1

𝑥−1
 in integers 𝑥 > 1, 𝑦 > 1, 𝑛 > 2 𝑎𝑛𝑑 𝑞 > 1. 

Remark: in the basis 𝑥 all the bits of the perfect power 𝑦𝑞  are equal to 1. 

Corollary 30: (Laishram-Shorey [56]) the abc-conjecture implies that the single solutions of the Nagell-

Ljunggren equation are: 

112 =
35 − 1

3 − 1
 ; 202 =

74 − 1

7 − 1
 and 73 =

183 − 1

18 − 1
 

Proof: (of corollary 30) 

*We reproduce here the Laishram-Shorey proof [56]. 

*Proceed by the absurd reasonning and Let  𝑥 > 1, 𝑦 > 1, 𝑛 > 2 𝑎𝑛𝑑 𝑞 > 1be a non-exceptional solution of the 

Diophantine equation:𝑦𝑞 =
𝑥𝑛−1

𝑥−1
. 

*Claim28: There are no further solutions of 𝑦𝑞 =
𝑥𝑛−1

𝑥−1
 for 𝑞 = 2. 

Proof: (of claim28) 

For a proof see Ljunggren [61]. 

*So, we may suppose that 𝑞 ≥ 3. 

*Caim29:  we have: 4 do not divide 𝑛. 

Proof: (of claim 29) 

For a proof see Nagell [77]. 

*Claim30: we have: 3 do not divide 𝑛. 

Proof: (of claim30) 

For a proof see Ljunggren [61]. 

*Claim31: We have: 5 and 7 do not divide 𝑛. 
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Proof: (Of claim 31) 

For a proof see Bugeaud, Hanrot and Mignotte [15]. 

*So: 𝑛 ≥ 11. 

*We have: 𝑦𝑞 =
𝑥𝑛−1

𝑥−1
⇔ 𝑥𝑛 = (𝑥 − 1)𝑦𝑞 + 1 𝑎𝑛𝑑 𝑞 ≥ 3 ⇒ 𝑦 < 𝑥

𝑛

𝑞 ≤ 𝑥
𝑛

3  and 𝑟(𝑥(𝑥 − 1)𝑦) < 𝑥2𝑦 < 𝑥2+
𝑛

3 . 

*But by the Baker version of the abc-conjecture, we have: 

{
𝑥𝑛 = (𝑥 − 1)𝑦𝑞 + 1

gcd(𝑥, 𝑦) = 1
⇒ 𝑥𝑛 < (𝑟(𝑥(𝑥 − 1)𝑦))

7
4 < 𝑥

7
4
(2+

𝑛
3
) ⇒ 𝑛 <

7

2
+
7𝑛

12
⇒ 𝑛 ≤ 8 

Conclusion: Having obtained the impossible relation11 ≤ 𝑛 ≤ 8: our starting absurd hypothesis “∃𝑥 > 1, 𝑦 >

1, 𝑛 > 2 𝑎𝑛𝑑 𝑞 > 1 a non-exceptional solution of the Diophantine equation 𝑦𝑞 =
𝑥𝑛−1

𝑥−1
" is not true. 

16. LAISHRAM-SHOREY RESOLUTION OF THE DIOPHANTINE EQUATION 𝒏(𝒏 +
𝒅)… (𝒏 + (𝒌 − 𝟏)𝒅) = 𝒃𝒚𝒍 

Consider the Diophantine equation 𝑛(𝑛 + 𝑑)… (𝑛 + (𝑘 − 1)𝑑) = 𝑏𝑦𝑙 

Corollary 31: (Granville [57]) the abc-conjecture and  𝑛(𝑛 + 𝑑)… (𝑛 + (𝑘 − 1)𝑑) = 𝑏𝑦𝑙  and  𝑙 = 2,3 ⇒ 𝑘 is 

bounded by an absolute constant. 

Proof: (of corollary 31) 

See Laishram (2004) [57], p 69. 

Corollary 32: (Shorey [94]) the abc-conjecture and  𝑛(𝑛 + 𝑑)… (𝑛 + (𝑘 − 1)𝑑) = 𝑏𝑦𝑙  and  𝑙 ≥ 4 ⇒ 𝑘 is 

bounded by an absolute constant. 

Proof: (of Corollary 32) 

See Shorey (1999) [94]. 

Corollary 33: (Gyory-Hajdu-Saradha [47]) the abc-conjecture implies that for a given 𝑘 ≥ 3: the Diophantine 

equation 𝑛(𝑛 + 𝑑)… (𝑛 + (𝑘 − 1)𝑑) = 𝑏𝑦𝑙has only finitely many solutions in positive integers 𝑛, 𝑑 >

1, 𝑏, 𝑦 and 𝑙 ≥ 4. 

Proof: (of corollary 33) 

For a proof see Gyory-Hajdu-Saradha [48]. 

Corollary 34: (Saradha [89]) we have: 

(1){
𝑛(𝑛 + 𝑑)… (𝑛 + (𝑘 − 1)𝑑) = 𝑏𝑦𝑙

𝑘 ≥ 8
⇒ 𝑙 ≤ 29.  

(2)𝑙 = 29 ⇒ 𝑘 ≤ 8. 

(3)𝑙 ∈ {19,23} ⇒ 𝑘 ≤ 32. 

(4) 𝑙 = 17 ⇒ 𝑘 ≤ 102. 
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(5) 𝑙 = 13 ⇒ 𝑘 ≤ 10.7 

(6) 𝑙 ∈ {7,11} ⇒ 𝑘 ≤ 𝑒𝑒
280
. 

Proof: (of corollary 34) 

For a proof see Saradha [89]. 

Corollary 35:  (𝑘, 𝑙) ∈ {(3,2); (3,3); (4,2)} ⇒ the Diophantine equation: 𝑛(𝑛 + 𝑑)… (𝑛 + (𝑘 − 1)𝑑) = 𝑏𝑦𝑙 

has infinitely many solutions. 

Conjecture:  it is conjectured that: 

∃𝑛, 𝑑 > 1, 𝑦 ≥ 1, 𝑏, 𝑙 ≥ 2 𝑎𝑛𝑑 𝑘 ≥ 3𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝑛(𝑛 + 𝑑)… (𝑛 + (𝑘 − 1)𝑑) = 𝑏𝑦𝑙

gcd(𝑛, 𝑑) = 1

𝑃(𝑏) = the greatest prime factor 𝑜𝑓 𝑏 ≤ 𝑘

⇒ (𝑘, 𝑙) ∈

{ (3,2), (3,3), (4,2)}  

Remark: for an account on the Diophantine equation 𝑛(𝑛 + 𝑑)… (𝑛 + (𝑘 − 1)𝑑) = 𝑏𝑦𝑙 see Shorey (2002) [95], 

[96] and Shorey-Saradha 2005 [98]. 

Corollary 36: The abc-conjecture implies that: 

(1)

{
 

 
𝑛(𝑛 + 𝑑)… (𝑛 + (𝑘 − 1)𝑑) = 𝑏𝑦𝑙

𝑛 ≥ 1, 𝑑 > 1, 𝑘 ≥ 4, 𝑏 ≥ 1, 𝑦 ≥ 1, 𝑙 > 1

gcd(𝑛, 𝑑) = 1

𝑃(𝑏) = the greatest prime factor of 𝑏 ≤ 𝑘

⇒ 𝑙 ≤ 7.  

(2) If 𝑙 = 7, we have: 𝑘 < 𝑒13006.2. 

Proof: (of claim36) 

For a proof see Laishram-Shorey 2011 [56]. 

17. THE GOORMAGHTIGH EQUATION: 

Definition15: (Goormaghtigh equation [44]) the Goormaghtigh equation is the Diophantine equation 
𝑥𝑚−1

𝑥−1
=

𝑦𝑛−1

𝑦−1
  in 𝑥 > 1, 𝑦 > 1,𝑚 > 2, 𝑛 > 2 with 𝑥 ≠ 𝑦. 

Remark :1) René Goormaghtigh (1893-1960,) was a Belgian  engineer, after whom the Goormaghtigh 

conjecture is named. 

2) We can assume without loss of generality that: 𝑥 > 𝑦 > 1 and 𝑛 > 𝑚 > 2 

3) See Shorey 1999 [94] for a survey of results on the Goormaghtigh equation. 

Weak conjecture: There are only finitely many solutions 𝑥, 𝑦,𝑚, 𝑛 of the Goormaghtigh equation. 

Strong Conjecture: It is conjectured that: 31=
53−1

5−1
=

25−1

2−1
 and 8191=

903−1

90−1
=

213−1

2−1
 are the sole solutions of the 

Goormaghtigh equation. 

Corollary 37: (Laishram-Shorey [56]) the abc-conjecture implies that the Goormaghtigh equation has only 

finitely many solutions in integers: 𝑥 > 1, 𝑦 > 1,𝑚 > 2, 𝑛 > 3 with 𝑥 ≠ 𝑦. More precisely we have: 
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(1){
𝑥𝑚−1

𝑥−1
=

𝑦𝑛−1

𝑦−1

𝑥 >, 𝑦 > 1,𝑚 > 2, 𝑛 > 3, 𝑥 > 𝑦
⇒ 𝑚 ≤ 6 

(2) 𝑚 = 6 ⇒ 7 ≤ 𝑛 ≤ 17 𝑤𝑖𝑡ℎ 𝑛 ∉ {11,16} 

(3) ∃𝐶 > 0 an effectively computable absolute constant such that: max (𝑥, 𝑦, 𝑛) ≤ 𝐶 

Remark: Laishram and Shorey say [56] that “This improves considerably theorem 1.4 of Saradha [88]” 

Proof: (of Corollary 37) 

For a proof see Laishram-Shorey 2011 [56]. 

18. EDWARD WARING PROBLEM: 
Definition16: (Waring problem [113]) this problem asks whether it is true that: ∀𝑘 ∈ ℕ ∃𝑠 ∈ ℕ∀𝑁 ∈

ℕ∃ at most s natural numbers 𝑥1, 𝑥2, … , 𝑥𝑠 such that:𝑁 = ∑ 𝑥𝑖
𝑘𝑠

𝑖=1 ? 

Remark : 1) the Waring problem was proposed in 1770 by the  British Mathematician Edward Waring (1736-

1798), after whom it is named. Waring wrote in [113]: « Omnis integer numerus vel est cubus, vel duobus, tribus, 

4, 5, 6, 7, 8, vel novem cubis compositus, est etiam quadrato-quadratus vel e duobus, tribus, &, usque ad 

novemdecim compositus, & sic deinceps ». 

2) Before Waring, the Alexandrian mathematician Diophantus (AD 200-284) had asked, in his « Diophantus 

Arithmetica » (see the Latin Translation by Claude Gaspard Bachet de Méziriac published in 1621) :   « is it true 

that : ∀𝑁 ∈ ℕ∗∃𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ ℕ such that : 𝑁 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 ?». The Diophantus problem is known as 

« Bachet conjecture », Bachet being the translator of « Diophantus Arithmetica » from Grec language to Latin 

language. 

3) The French Mathematician  Pierre de Fermant claimed in 1640 to have a proof of the Diophantus problem but 

he did not never publish this proof.  

4) In 1770, Some Months after the Waring problem announced, the French Mathematician Lagrange, J.L. confirms 

the “Diophantus problem”,  by showing that:”any positive integer is a sum of at most 4 squares”. The Lagrange 

result is known as:”Lagrange Four-square theorem”. 

5) In 1986, François Dress, R. Balasubramanian and Jean-Marc Deshouillers show in [9] that: “any positive integer 

is a sum of at most 18 bi-squares”. 

6) For more details about Waring Problem see [63], [106], [111], [112]. 

Theorem 4 : (Hilbert [53]-Waring [113] theorem) gives an affirmative answer to the Waring problem. 

Proof : (of theorem 4)  

For a proof see Hilbert  1909 [53]. 

Definition 17: (the Waring function𝑔) ∀𝑘 integer≥ 2: 

𝑔(𝑘) = min {𝑠 ∈ ℕ∗, ∀𝑁 ∈ ℕ ∃𝑥1, 𝑥2, … , 𝑥𝑠 ∈ ℕ  such that 𝑁 =∑𝑥𝑟
𝑘}

𝑠

𝑟=1

 

http://www.gjaets.com/


 
[Ghanim et al., 9(2): February, 2022]  ISSN 2349-0292 
  Impact Factor 3.802 

http: // www.gjaets.com/                 © Global Journal of Advance Engineering Technology and Sciences 

 [40] 

Definition18: for 𝑘 integer ≥ 2 define 𝐼(𝑘) = 2𝑘 + 𝐸 ((
3

2
)
𝑘

) − 2, where 𝐸(𝑡) denotes the entire part of the real 

𝑡. 

Proposition20: (Euler J. A. theorem [111], [112])∀𝑘 integer ≥ 2 we have: 𝑔(𝑘) ≥ 𝐼(𝑘). 

Remark: Johann Albrecht Euler (1734-1800) is a Swiss mathematician son of the famous Swiss Mathematician 

Leonhard Euler (1707-1783). He proved proposition 19 as reproduced here (See [111], [112]). 

Proof: (of proposition 19) 

*By the Euclidean division of:  3𝑘 by 2𝑘, we have:3𝑘 = 2𝑘𝑞 + 𝑟 with 0 < 𝑟 < 2𝑘 and 𝑞 = 𝐸 ((
3

2
)
𝑘

)=the integer 

part of (
3

2
)
𝑘

. 

*Consider the integer 𝑁 = 2𝑘𝑞 − 1 = (𝑞 − 1)2𝑘 + (2𝑘 − 1)1𝑘 . 

*𝑁 < 3𝑘 ⇒ any sum in k-powers of 𝑁 does not contain 3𝑘. 

*𝑁 < 𝑞2𝑘 ⇒there is at most 𝑞 − 1 terms are of the form 2𝑘and all the others are of the form 1𝑘. 

*So, the number of terms is ≥ 𝑞 − 1 + 2𝑘 − 1 = 𝐼(𝑘). 

*That is: 𝑔(𝑘) ≥ 𝐼(𝑘). 

Conjecture: (of Bretschneider, C.A. (see [11])): ∀𝑘 integer ≥ 2 we have: 𝑔(𝑘) = 2𝑘 + 𝐸 ((
3

2
)
𝑘
) − 2. 

Remark: Carl Anton Bretschneider (1808-1878) is a German mathematician. He announced his conjecture on 1853. 

Theorem5:  (Pillai S. [84]-Dickson L.E. [23], [24]) we have: 

                                     3𝑘 − 2𝑘𝐸 ((
3

2
)
𝑘
) ≤ 2𝑘 − 𝐸 ((

3

2
)
𝑘
) − 2 ⇒ 𝑔(𝑘) = 2𝑘 + 𝐸 ((

3

2
)
𝑘
) − 2  

Remark: Pillai and Dickson showed theorem 5 independently on 1936. 

Remark:  1) Stemmler showed in 1990 [100] that the condition 3𝑘 − 2𝑘𝐸 ((
3

2
)
𝑘
) ≤ 2𝑘 − 𝐸 ((

3

2
)
𝑘
) − 2 is satisfied by  4 ≤

𝑘 ≤ 401 600 000   

2) Kubina-Wunderlich showed in 1990 [55] that the condition 3𝑘 − 2𝑘𝐸 ((
3

2
)
𝑘
) ≤ 2𝑘 − 𝐸 ((

3

2
)
𝑘
) − 2 is satisfied by  4 ≤

𝑘 ≤ 471 600 000. 

Theorem6: (Kurt Mahler (1903-1988) [64]) the condition  3𝑘 − 2𝑘𝐸 ((
3

2
)
𝑘
) ≤ 2𝑘 − 𝐸 ((

3

2
)
𝑘
) − 2 is true for any integer 𝑘 

great enough. 

Corollary38: (Laishram S. [57], [58]) the abc-conjecture⇒ ∀𝑘 integer ≥ 2 we have: 𝑔(𝑘) = 2𝑘 +  𝐸 ((
3

2
)
𝑘
) − 2. 

Proof: (of corollary 38) 

*We reproduce below the proof of Laishram given in [55], [56]. 
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*We write 3𝑘 = 2𝑘 q + u with 0 < u < 2𝑘 and q =  𝐸((
3

2
)
𝑘

)  .  

*By the Dickson-Pillai theorem (theorem 5), The Mahler theorem (theorem 6) and the Kubina-Wunderlich result, 

the ideal Waring’s Theorem holds provided that the remainder u = 3𝑘 − 2𝑘𝑞  satisfies the inequality: u ≤ 2𝑘 − q – 

3, satisfied for 3 ≤ k ≤ 471600000 as well as for sufficiently large k. 

*Suppose k > 471600000 

*Proceed by the absurd reasonning and suppose that: u ≥ 2𝑘 − q – 2 

* Let gcd (3𝑘 , 2𝑘 (q + 1)) = 3𝑣 and set a = 3𝑘−𝑣  , c = 3−𝑣 2𝑘 (q + 1) and b = c − a = 3−𝑣 (2𝑘 − u).  

*We have: {

𝑎 + 𝑏 = 𝑐
𝑏 = 3−𝑣 (2𝑘  −  u) ≤ 3−𝑣(𝑞 + 3)

gcd(𝑎, 𝑏, 𝑐) = 1 
. 

*Then  r=r (abc) = r (3𝑘−𝑣 · 3−𝑣2𝑘 (q + 1)  · b) ≤ 6b (q + 1) 3−𝑣 ≤ 6(q + 1) (q + 3) 3−2𝑣  .  

First case : if r < 𝑒63727. 

*By the Baker version of the abc-conjecture, we have : 2𝑘 ≤ 2𝑘 (q + 1) 3−𝑣 <  𝑟
7

4 < 𝑒
7

4
×63727. 

* So : k < 
63727×7

4ln (2)
  < 160893.  

*This is impossible since k > 471600000.  

Second case : if r ≥ 𝑒63727. 

*By The remark following the Baker version of the abc-conjecture (see proposition 9), written for: =
1

3
 , we have : 

                                                         2𝑘 (q + 1) 3−𝑣 < 
6

5√2𝜋×6460
(
(𝑞+1)(𝑞+3)

32𝑣
)
4

3 

*So : 2𝑘 < 
6
7
3

5√12920𝜋
𝑞
5

3(1 +
3

𝑞
)
5

3  . 

* Since 3𝑘 > 2𝑘 q, we have q < (
3

2
)𝑘 and also : 1 + 

3

𝑞
 < 2 since k ≥ 3.  

*Finally : 2𝑘 <
6
7
3

5√12920𝜋
𝑞
5

3(1 +
3

𝑞
)
5

3  <
6
7
3×2

5
3

5√12920𝜋
((
3

2
)

5

3
)𝑘 =0. 20617…× (1.96… )𝑘 < 2𝑘.  

*This is being impossible the result follows. 

Hardy and Littlewood introduced [49], [50] the more important function 𝐺 defined by: 

Definition 19: (the Waring function ) ) ∀𝑘 integer≥ 2: 

𝐺(𝑘) = min {𝑠 ∈ ℕ∗, ∃𝐶(𝑘) > 0∀𝑁 ∈ ℕ,𝑁 ≥ 𝐶(𝑘) ∃𝑥1, 𝑥2, … , 𝑥𝑠 ∈ ℕ  such that 𝑁 =∑𝑥𝑟
𝑘}

𝑠

𝑟=1

 

Proposition 21: ∀𝑘 integer ≥ 2   we have: 𝐺(𝑘) ≤ 𝑔(𝑘). 
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Proof: (of proposition 21) 

The result follows by definition of 𝑔 and 𝐺. 

Proposition 22: We have: 

(1)𝐺(𝑘) ≥ 2𝑙+2𝑖𝑓 𝑘 = 2𝑙 , 𝑙 ≥ 2 𝑜𝑟 𝑘 = 3 × 2𝑙 . 

(2)𝐺(𝑘) ≥ 𝑝𝑙+1, 𝑖𝑓 𝑝 ∈ ℙ (The set of prime integers), 𝑝 > 2 𝑎𝑛𝑑 𝑘 = 𝑝𝑙(𝑝 − 1). 

(3)𝐺(𝑘) ≥
𝑝𝑙+1−1

2
, if 𝑝 ∈ ℙ, 𝑝 > 2 𝑎𝑛𝑑 𝑘 =

𝑝𝑙(𝑝−1)

2
. 

Proof: (of proposition 22) 

*The results follow by consideration the structure of the unîtes group of the ringℤ/𝑛ℤ. 

*For example the relation (3) follows from the fact that any power ke ≡ −1, 0 𝑜𝑟 1 [modulo𝑝𝑙+1]. 

Theorem7:  (See Pascal Boyer [10]) ∀𝑘 integer ≥ 2 we have: 𝐺(𝑘) ≥ 𝑘 + 1. 

Proof: (of theorem7) 

For a proof see Boyer [10]. 

Conjecture:  In the absence of congruence restrictions, by a density argument, we must have: G (k) = k + 1. 

Theorem8: (A.A. Karatsuba [54]) ∀𝑘 integer ≥ 404  𝐺(𝑘) < 2𝑘(ln(𝑘) + ln(ln(𝑘)) + 6).  

Proof: (of theorem8) 

For a proof see Karatsuba [54].   

Remark: For More Applications and consequences of the abc-conjecture see [17], [52], [78], [93], [111] and [112]. 
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