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ABSTRACT 
Magnetic adaptive testing is a nondestructive method, based on systematic measurement and evaluation of 

magnetic hysteresis loops, to characterize the degradation of ferromagnetic materials. Magnetic parameters in 

general depend on the size of the samples to be measured, and results of measurements, performed on different 

size samples cannot be compared with each other. In this work it is shown, that by proper choice of the size of 

magnetizing yoke, the degradation of the material can be correctly determined even in that case if different size 

of samples are measured. 
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INTRODUCTION  
The long-term operation (LTO) of existing nuclear power plants has already been accepted in many countries as 

a strategic objective to ensure adequate supply of electricity over the coming decades. LTO requires reliable 

tools for estimating the remaining useful lifetime. In this context, one of the main questions is: How can 

nondestructive (NDE) methods monitor the progression of material degradation on components complementary 

to the destructive sample-based tests while accounting for material heterogeneities? It is well known that 

changes of the microstructure and material properties can be non-invasive detected. Magnetic measurements are 

one of the promisingg candidates of novel nondestructive methods. Among others, degradation of nuclear 

pressure vessel steel material was investigated by a novel magnetic nondestructive testing method, so called 

Magnetic Adaptive Testing (MAT) [1]. MAT measures series of minor magnetic hysteresis loops and a number 

of magnetic descriptors are evaluated, which are suitable for proper and sensitive characterization of material 

degradation. By applying this technique the minor hyteresis loops are measured on a sample series having 

different material degradation or material characteristics, and the magnetic descriptors of each sample are 

compared with the corresponding descriptor of the reference sample. Such a way correlation can be found 

between magnetic parameters and the independent parameter(s) of samples. 

 

Effectivity of MAT was demonstrated in several previous works, as summarized in [1]. In some recent works 

our attention was focused for application of MAT in nuclear industry. Samples were thermally treated by a 

special step cooling procedure to produce microstructural changes similar to those occuring at irradiation. It was 

found that this type of degradation can be easily followed by magnetic measurements. Results of Charpy impact 

tests were compared with the magnetic parameters. A good, reliable and nearly linear correlation was found 

between magnetic descriptors and transition temperature [2]. It was also shown that the ferromagnetic base 

material of reactor pressure wessel steel can be inspected even through the relatively thick cladding, and the 

measurement through the cladding result the same correlation between magnetic parameters and independent 

variable as obtained by direct measurement of base material [3]. 

 

A basic and important feature of MAT is, that it is a relative method: parameters of the measured, degraded 

samples are compared with the corresponding parameter of a reference (not degraded) sample. We get 

information such a way about the degree of degradation of material as function of independently determined 

parameters. However, for the reliable comparison of the different samples of the same series the measurement 

should be rigorously performed by the same parameters of measurement, such as size of magnetizing yoke, 

slope of the change of magnetizing field, surface conditions, etc. 

 

In many cases it can happen, however, that different pieces of the sample series have different size (or shape). If 

measurement of magnetic hysteresis loops are measured on different size samples, the density of the magnetic 

flux inside the magnetizing yoke (which is actually measured by the pickup coil) is different, due to the stray 

magnetic field, determined by the size of sample. The purpose of the present work is to analyze the influence of 
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the sample size on the evaluated MAT parameters. As an example for this analysis, cast iron samples were 

chosen for investigation. 

 

Measurements were performed on a special series of cast iron samples. Cast iron is a very important and 

traditionally used material in industry [4]. The material properties are determined by the structure of the 

material: metallic matrix composition and graphite morphology. Both of them have a great influence on 

mechanical characteristics of the construction objects made of cast iron. This is the reason, why the study of 

both matrix composition of cast iron material (pearlite, ferrite, chill, carbide content) and graphite morphology 

is important. There are several types of cast iron. In our work we deal with the study of the so-called ductile cast 

iron. Ductile cast iron is frequently used in that cases, where weight saving is important. For this purpose thin 

walled cast iron is required and ductile cast iron is an ideal material, because it can contain proeutectoid 

cementite structures, known as ‘chill’ structures. Thin-walled cast iron components suffer from an increased 

cooling rate during solidification in the casting process, and chill structures are often crystallized in them. The 

inclusion of chill structures makes the cast iron hard and brittle and represents a real danger for cutting tools 

used during the cast iron next machining. Therefore, quantitative non-destructive evaluation of matrix structures 

of cast irons becomes a highly required part of castings acceptance in foundry industries. In a previous work the 

chill structure in ductile cast irons was evaluated quantitatively by the nondestructive incremental permeability 

method focusing on the dependence of chill structures on magnetic properties [5]. Application of Magnetic 

adaptive testing on ductile cast iron was reported in [6], where the results of the non-destructive magnetic tests 

were compared with the destructive mechanical measurements of Brinell hardness and good correlation was 

found between them. 

 

SAMPLE PREPARATION  
Ductile cast iron samples were cast into a step-bar shape mold, having 4 steps. Thicknesses of the steps are 5 

mm, 10 mm, 20 mm, and 30 mm, respectively. The step-bar sample is shown in Fig. 1. Due to the thickness 

difference, different cooling rates were realized during solidification. This process resulted in different chill 

inclusions in the different steps of the same sample. Table 1. shows chemical composition of the step-bar 

sample. 
 

 
Fig. 1. The step-bar sample. 

 

Table 1. Chemical composition of step-bar ductile cast iron sample (values in wt%) 

 
 

For the measurements rectangular plate-shaped specimens were machined from each step of the samples, the 

sizes of them are given in Table. 2. The microstructure of the samples was observed with an optical microscope. 

The volume fractions of pearlite, ferrite, chill, and graphite were evaluated quantitatively by image analysis of 

the etched and nonetched specimen micrographs. Detailed results of the image analysis are reported in [3]. 

Because micro-structure of the ductile cast iron consists of pearlite, ferrite, chill, and graphite structures, the 

volume fraction of pearlite can be evaluated by xP = 100 – xF – xC – xG, where xP is the fraction of pearlite % 

area, xF is the fraction of ferrite % area, xC is the fraction of chill % area, and xG is the fraction of graphite % 

area 

 

Using Vickers hardness machine, hardness were measured 25 times at each step of samples. The applied force 

was 98.07 N kept for 15 s.  
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Table 2. Original sample sizes 

 

 
Fig. 2. Original size of samples. 

 

Each piece has different size, as indicated above the photo and givern in Table 2. In the first series of 

measurement different size samples were used, as shown in Fig. 2., and MAT mesurements were performed on 

each pieces. In next step, uniform size (60mm x 14.8mm x 4.2mm) pieces (shown in Fig.3) were machined and 

MAT measurements were repeated on each piece. 

 

 
Fig. 3. Uniform size (60mm x 14.8mm x 4.2mm) of samples, machined from the original size pieces. 

 

MAGNETIC ADAPTIVE TESTING 
Magnetic adaptive testing was used for magnetic measurements. Series of minor magnetic hysteresis loops were 

measured by using a yoke for magnetizing the samples. During MAT measurement the samples are periodically 

magnetized with step-wise increasing amplitudes. A specially designed Permeameter [7] with a magnetizing 

yoke was applied for measurement of families of minor loops of the magnetic circuit differential permeability. 

The magnetizing coil, wound on the yoke, gets a triangular waveform current with step-wise increasing 

amplitudes and with a fixed slope-magnitude in all the triangles. This produces time-variation of the effective 

field in the magnetizing circuit and voltage signal is induced in the pick-up coil wound also on the yoke. As long 

as the magnetizing field sweeps linearly with time, the voltage signal in the pick-up coil is proportional to the 

mean differential permeability of the magnetic circuit. It means that the measured permeability loops (which can 

be presented later) highly depends on the slope of magnetizing field, and also on the actual magnetizing yoke, 

which is used for the measurements. 

 

By applying MAT, the primary result of measurement is the series of permeability loops. Then, during 

evaluation of measured data, by using the points of permeability loops (minor loop amplitude vs. magnetizing 

field) a big datapool, the so called mij –descriptors, are calculated, coordinates of which are the magnetic field 

value, hai, at a minor loop with an amplitude hbj. Each element of the matrix, obtained on the actual sample, is 

normalized by the corresponding element of the reference sample. In this way the normalized mij – descriptors 

hold information about the changes, which happened in the deformed/degraded/processed samples. These 

descriptors are suitable for characterization of changes in the material caused by any degradation. MAT is a 

relative method, it is not able to determine any absolute magnetic characteristics. The purpose of MAT is to 
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follow the degradation of materials (due to heat treatment, neutron irradiation, etc). We measure the series of 

samples, and compare the actual magnetic parameters with the corresponding parameter of the reference sample 

as function of material degradation. It is absolutely necessary that all samples with different degradation should 

be measured by the same experimental parameters. Details of MAT technique are described in [1] 

 

In the present case, where cast iron material is investigated, the term ”degradation” means modification of the 

matrix structure of cast iron samples, generated by the different cooling rates, and the independent parameters 

are volume ratio of chill, pearliete and graphite. These type of samples were previously investigated by 

Magnetic adaptive testing, and it was shown, that the relative pearlite volume fraction of the metallic matrix of 

cast iron samples could be determined by this method with a good reliability [8]. Another type of cast iron, the 

so called flake graphite cast iron was also investigated by MAT and good, linear correlation was found between 

magnetic descriptors and Brinell hardness [9]. 

 

SIMULATION OF THE MAGNETIC FLUX CHANGE  
As it was shown in [10], simulation of magnetic flux densitiy in the magnetic circuit during MAT measurement 

is a useful tool for determining the optimal parameters of the actual measurement arrangement. In this 

calculation the size of the magnetizing yoke was changed and the influence of this modification was studied on 

the detectable flux density. A similar simulation was performed in the present case, too, becasue it is expected 

that magnetic flux densitiy in the cross section of the magnetizing yoke depends on the size of the measured 

sample: by decreasing the size of the sample more and more flux spread to the air. This is the reason, why we 

also expect different measured permeability loops if the size of the sample is modified, while other parameters 

of the measurement is kept fixed. To check the validity of this assumption, as a firs step, the variation of the 

magnetic flux density in the cross section of the magnetizing yoke was calculated if the size of the measured 

sample was modified. 

 

The AC/DC Module of the Comsol Multiphysics® finite element software was used for the simulation [11]. A 

magnetizing yoke made of laminated steel (having μr = 100 relative permeability) was placed on the top of the 

sample (having μr = 5000 relative permeability). The size of the sample was modified and the change of the 

magnetic flux was calculated in the cross section of the magnetizing yoke. The size and geometry of the 

magnetizing yoke is given in Fig. 4. The lateral size of the sample was modified, and the magnetic flux in the 

yoke was calculated for three different sizes as functions of the sample thickness. The lateral sizes were 30mm x 

30mm, 50mm x 50mm, and 100mm x 100 mm respectively. The excitation is prescribed as a surface current 

density on the lateral surfaces of the “bridge” of the yoke, which adds up to a total current of 1 AT. The flux of 

the yoke is computed by the integral of the flux density over the cross-sectional surface of the yoke. The 

magnetic flux was calculated by systematic modification of the thickness of the sample. Fig. 5 shows, how the 

surface integral of the perpendicular component of the magnetic induction depends on the thickness of the 

sample to be magnetized. 

 

 
Fig. 4. The magnetizing yoke over the sample to be measured (only the half of the arrangement is shown). The size of the 

yoke is given in m 
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Fig. 5. The calculated magnetic flux in the cross section of the yoke (shown in Fig.3) as a function of the sample 

thickness for three different samples having lateral dimensions of 30x30, 50x50 and 100x100 mm 

 

It is seen very well in the figure that the generated magnetic flux in the magnetizing yoke depends significantly 

on the dimensions of the sample to be measured. The calculations proved the assumption that the size of sample 

has a large impact on the magnetic flux in the yoke by using the same size of magnetizing yoke. It is also 

demonstrated that the thickness of the sample has larger influence than the lateral size of sample. The curve 

becomes flat between 15 and 20 mm thickness. If smaller size of magnetizing yoke is used (results are not 

presented here), this „saturation point” is shifted towards lower values of thickness. The result of simulation 

gives a chance that by the proper choice of the ratio of magnetizing yoke size and sample size, the influence of 

sample can be limited. 

 

RESULTS  
MAT measurements were made on all original size pieces of samples, described in Section 2, and the 

measurements were repeated by the same parameters after cutting the samples to unifornm size. Three different 

size yokes were used for the investigation, all measurements were performed by all of these yokes. The size of 

yokes are given in Fig. 6 and in Table 3. The yokes are made of C shaped laminated steel. 

 

 
Fig.6. Sketch and characteristic dimensions of the yokes (on left side the sole of the yoke is shown) 

 
Table 3: Characteristic dimensions of the yokes, used for the measurements 

 
 

To illustrate the influence of the sample size on the measured permeability loops (which are the base for MAT 

evaluations) two series of permeability curves are given in Fig. 7. These loops were measured on the 30 mm 

step sample, on original and on uniform size pieces, by using yoke „B” 
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Fig. 7. The measured permeability loops on original and on uniform size pieces of the 30 mm step samples, by applying 

yoke „B”. 

 

It is seen very well, that the reduction of the sample size originates a significant decrease of permeability, in 

correlation with the results of simulation. However, if the size of magnetizing yoke is decreased, the differences 

in the measured permeability almost disappear. Fig. 8 shows the permeability loops measured on the 30 mm step 

sample, on original and on uniform size pieces, by using yoke „A” 

 
Fig. 8. The measured permeability loops on original and on uniform size pieces of the 30 mm step samples, by applying 

yoke „B” 

 

MAT evaluation were performed on all pieces of the investigated samples and MAT degradation functions were 

determined. Those, which were optimized for description of the studied dependences (as functions of pearlite 

content and of Vickers hardness) were considered. Optimization means that those degradation functions were 

chosen from the big data pool, generated by the MAT evaluation, which were the most sensitive with respect to 

the change of the independent parameter, and at the same time they were highly repeatable, and in such a way 

the most reliable. The details of evaluation is given in [1]. In case of pearlite content the permeability, m, was 

found as the optimal one, while in case of hardness the permeability, 1/m, was found as the optimal one 

characterizing the correlation between magnetic and independent parameter. 

 

In the following figures (Figs. 9, 10 and 11) the results of evaluation are given for the three different size 

magnetizing yoke, which were used in the measurements. All measurements were performed on the original size 

of samples and also on the same samples after cutting them to uniform size. 
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Fig. 9. The optimal normalized MAT m–descriptor versus the relative volume fraction of pearlite content (a), and optimal 

normalized MAT 1/m–descriptor versus the Vickers hardness (b) measured on the investigated original size and uniform 

size samples by using magnetizing yoke „C”. 

 

 
Fig. 10. The optimal normalized MAT m–descriptor versus the relative volume fraction of pearlite content (a), and 

optimal normalized MAT 1/m–descriptor versus the Vickers hardness (b) measured on the investigated original size and 

uniform size samples by using magnetizing yoke „B”. 

 

 
Fig. 11. The optimal normalized MAT m–descriptor versus the relative volume fraction of pearlite content (a), and 

optimal normalized MAT 1/m–descriptor versus the Vickers hardness (b) measured on the investigated original size and 

uniform size samples by using magnetizing yoke „A” 

 

DISCUSSION 
Linear correlation with low scatter of points was obtained between the optimally chosen MAT parameters and 

the pearlite content of the cast iron material and also between MAT parameters and Vickers hardness. These 

results correlate very well to our previous results: The hardness results are in good correlation with other results 

i) obtained in case of another type of cast iron (flake graphite cast iron) material [7] and ii) with the results of 

Matsumoto at al., performed on the same series of samples but by using another type of magnetic method [3], 

the so called incremental permeability method. The permeability results shown above are in good correlation 

with previous measurements performed on flake graphite cast iron samples [6]. So, the above presented results 
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confirm the existing linear correlation between magnetic parameters and permeability and also between 

magnetic parameters and hardness. 

 

The novelty of the present work is the investigation of the influence of the sample size on the magnetic 

descriptors. It is seen very well that both the directly measured permeability curves (Figs. 7 and 8) and the MAT 

descriptors (Figs. 9, 10 and 11) depend significantly on the size of the sample. If we want to make any statement 

about correlation between magnetic parameters and independent other characteristics, this fact should be taken 

into account. 

 

However, if the size of the magnetizing yoke is decreased, the difference is disappearing. Fig. 11 demonstrates 

that by using the smallest size magneziting yoke (yoke „A”) the obtained correlation between MAT descriptors 

and independent parameters is the same, regardless on the size of the actual sample. With other words: the size 

of the sample should not be taken into account, reliable correlation can be get between MAT parameters and 

structural characteristics. It is interesting and worth of mentioning that in any case linear correlation exists, but 

the slope of the line is significantly different if different size samples are measured and compared. 

 

The slope of the line in both cases is the same if the measurements are performed on uniform size samples, 

regardless on the size of the yoke, and on any size of samples by using small size magnetizing yoke. This fact 

confirms that the „proper” correlation is determined either by using uniform size sample or by using small size 

magnetizing yoke in the case of different size samples, too. 

 

CONCLUSIONS  

It was demonstrated both empirically and by simulation that the result of magnetic measurement (performed by 

systematic measurement and evaluation of minor magnetic hysteresis loops) strongly depend on the size of 

sample and of the size of magnetizing yoke, which is used for magnetization. However, if the size of the 

magnetizing yoke is decreased to a proper size (or the sample is large enough compared with the size of yoke), 

the correlation does not depend any more on the sample size. Evidentlya, the exact size of magnetizing yoke can 

be determined in the knowledge of the size of samples to be investigated. In this work we made only an 

illustration by using a certain geometry on a certain material.  
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