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Abstract 
This work proposes a new approach to increase the quality of natural images by compressing the images into large 

extent. The proposed scheme is used on different types of families of wavelets and experiments on Matlab are done using 
wavelet transform. Different compression algorithms are also applied for best results. Quality  estimation is done on the basis 
of entropy calculation. However other parameters like compression ratio, peak signal to noise ratio  and energy retained are 
also calculated for comparison these wavelet families.  
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1. Introduction 

Image compression technique is required to minimize 
the amount of memory needed to represent an image. 
Images often require a large number of bits, and if the 
image needs to be transmitted or stored, it is not possible 
to do so without  reducing the number of bits. The 
problem arises when we transmit or store large images. 
TV and fax machines are both the examples of image 
transmission, and digital video players are the examples 
of image compression [1] [2] [3] [4] [5] [6] [7][8].  

Each level of an image is represented by an 8- bit 
binary number, such that black is represented by 
00000000 and white is 11111111. An image can therefore 
be thought of as grid of pixels, where each pixel can be 
represented by the 8-bit binary value for grey scale. The 
resolution of image is given by pixels per square inch or 
dots per inch (dpi). So 500dpi means that a pixel is 
1/500th of an inch.To digitize a one-inch square image at 
500dpi requires 8*8*500=2 million storage bits. So image 
data compression is a great advantage if image is required 
to be stored, transmitted and processed.  

      

 
 
 
 

2. Methods of Compression 
Fourier Analysis:. Fourier analysis is a mathematical 
function for transforming signal from time based to 
frequency based. It breaks down a signal in to constituent 
sinusoids of different frequencies. But, In transforming to 
the frequency domain, time information is lost. During 
Fourier transforms of a signal, it is impossible to tell when 
a particular event took place. If the signal properties do not 
change much over time it is called a stationary signal. [13]. 

JPEG Compression: - JPEG stands for the Joint 
Photographic Experts Group, a standards committee that 
had its origins within the International Standard 
Organization (ISO). JPEG provides a good compression 
method that is capable of compressing continuous-tone 
image data with a pixel depth of 6 to 24 bits with 
reasonable speed and efficiency. And although JPEG itself 
does not define a standard image file format, several have 
been invented or modified to fill the needs of JPEG data 
storage [14] [15].Wavelet Analysis:-The signal is defined 
by a function of one variable or many variables. Any 
function is represented with the help of basis function. An 
impulse is used as basis function in time domain can be 
represented in time as a summation of various scaled and 
shifted impulses. Sine function is used as the basis in the 
frequency domain. But, these two basic functions have 
their own weakness: an impulse is not localized. In the 
frequency domain and thus a poor basis function to 
represent the frequency information. In order to represent 
complex signal efficiently, a basis function should be 
localized in both time and frequency domain. The support 
of such basis function should be variable, so that narrow 
version of function can be used to represent the high 
frequency components of a signal while wide version of 
function can be used to represent the low frequency 
components. Wavelets satisfy the condition to be qualified 
as the basis function. 
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One of the most commonly use approaches for analyzing a 
signal f(x) is to represent it as a sum of simple building 
blocks, called basis function. 

                                               f(x)=∑CiΨi (x) 

Where theΨi(x) are basis function and Ci are coefficients, 
or weights. Since the basis functions Ψi are the fixed, it is 
the coefficients which contain the information about the 
signal. The simplest such representation uses translate of 
the impulse function as its only bases, yielding a 
representation had reveals information only about the time 
domain behaviour of the signal. Choosing the sinusoidal as 
the basis functions yields a Fourier representation that 
reveals information only about the signal‘s frequency 
domain behaviour. Wavelets are function that satisfy 
certain mathematical requirements and are used in 
representing data or other functions. The basic idea of 
wavelet transform is to represent any arbitrary signals X as 
a superposition of such wavelets or basis functions. These 
basis function are obtained from a single photo type 
wavelet called mother wavelet by (scaling) and 
translation(shifting).For the purpose of signals 
compression  the representations is ideal about both the 
time and frequency behaviour of signal. Resolution in time 
( Δx) and resolution in frequency (Δω) cannot both the 
made arbitrarily small at the same time because their 
product is lower bounded by the Heisenberg inequality.                                          

                                                   Δx Δω ≥1/2 

    This inequality means that we must trade off time 
resolution for frequency resolution, or vice versa. Thus it 
is possible to get very good resolution in time to settle for 
low resolution in frequency and you can get very good in 
frequency to settle for low resolution in time [16]. 

3. Types of Wavelets 
Daubechies Maxflat Wavelet: - There are many 
wavelets available to decompose and analyze both 
discrete and continuous data. Harr filter represents special 
case of Daubechies filter family. Harr filter is actually 
Daubechies filter of order 1.The construction is based on 
solving the frequency response function for the filter 
coefficients satisfying orthogonality and moment 
conditions. The main feature of Daubachies family is 
orthogonailty and asymmetry. The support length of 
scaling and wavelet function is 2N-1.the number of 
vanishing moment of wavelet function is N. Filter length 
is 2N[17]. 

 
Figure 1 Representation of Daubachies Wavelet 

Coiflet wavelet: - Coiflet is a discrete wavelet designed by 
Ingrid Daubechies to be more symmetrical than the 
Daubechies wavelet. Whereas Daubechies wavelets have 
N / 2 − 1 vanishing moments, Coiflet scaling functions 
have N / 3 − 1 zero moments and their wavelet functions 
have N / 3. 

 Coefficients:- Both the scaling function (low-pass filter) 
and the wavelet function (High-Pass Filter) must be 
normalized by a factor. Below are the coefficients for the 
scaling functions for C6-30. The wavelet coefficients are 
derived by reversing the order of the scaling function 
coefficients and then reversing the sign of every second 
one. 

Scaling function: - As in the orthogonal case, �(t) and 
�(t/2) are related by a scaling equation which is a 
consequence of the inclusions of the resolution spaces 
from coarse to fine: 

 

Similar equations exist for the dual functions which 
determine the filters h2 and g2. 

Vanishing moments: - A coiflet wavelet has m vanishing 
moments if and only if its dual scaling function generates 
polynomials up to degree m. Hence there is an equivalence 
theorem between vanishing moments and the number of 
zeroes of the filter's transfer, provided that duality has to 
be taken into account. Duality appears naturally, because 
the filters determine the degree of the polynomials which 
can be generated by the scaling function, and this degree is 
equal to the number of vanishing moments of the dual 
wavelet.  certain number of vanishing moments on a 
scaling function (e.g., coiflets) leads to fairly small phase 
distortion on its associated filter.real-valued, compactly 
supported, orthonormal, and nearly symmetric wavelets 
(we call them generalized coiflets) with a number of 
nonzero-centered vanishing moments equally distributed 
on scaling function and wavelet. Such a generalization of 
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the original coiflets offers one more free parameter, the 
mean of the scaling function, in designing filter. 

 
Figure 2  Coiflet filter of different order 

Bi-orthogonal Wavelet: - A biorthogonal wavelet is a 
wavelet where the associated wavelet transform is 
invertible but not necessarily orthogonal. In the 

biorthogonal case, there are two scaling functions , 
which may generate different multiresolution analyses, and 

accordingly two different wavelet functions  . So 
the numbers M, N of coefficients in the scaling sequences 
a,ã may differ. The scaling sequences must satisfy the 
following biorthogonality condition[18] 

                           

Then the wavelet sequences can be determined as,  

 n=0,...,M-1 

and,   n=0,....,N-1.  

Scaling equation: As in the orthogonal case, y(t) and 
j(t/2) are related by a scaling equation which is a 
consequence of the inclusions of the resolution spaces 
from coarse to fine: 

          

Similar equations exist for the dual functions which 
determine the filters h2 and g2. 

Vanishing moments: A biorthogonal wavelet has m 
vanishing moments if and only if its dual scaling function 
generates polynomials up to degree m. Duality appears 
naturally, because the filters determine the degree of the 
polynomials which can be generated by the scaling 

function, and this degree is equal to the number of 
vanishing moments of the dual wavelet 

  

  

 

Figure 3  Bi-Orthogonal wavelet filter order of (1.3,1.5) 

Symlet wavelet: - Symlets are also orthogonal and 
compactly supported wavelets, which are proposed by I. 
Daubechies as modifications to the db family. Symlets are 
near symmetric and have the least asymmetry. The 
associated scaling filters are near linear-phase filters. 
Daubechies, Symlet and Coiflet filters having special 
property of more energy conservation, more vanishing 
moments, regularity and asymmetry than other 
biorthogonal filters. For example, in the case of 
Daubechies wavelets we have a maximum number of 
vanishing moments and maximal asymmetry with fixed 
length of support, while the Symlet wavelet family has the 
”least asymmetry” and highest number of vanishing 
moments with a given support 
width.

 Figure 4  of Symlet wavelet filters of different order 

4. Wavelet Filter Selection 
Discrete Wavelet Transform (DWT) is a popular 

technique for image coding applications. In this method 
the entire image is transformed and compressed as a 

single data object rather than block to block, allowing 
for a uniform distribution of compression error across 
the entire image. The blocking artifacts and mosquito 
noise are absent in a wavelet  based coder  due  to  the  
overlapping  basis  functions  [19].  These wavelet 
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functions can be divided into two parts: orthogonal and 
biorthogonal. Orthogonal wavelets use the similar filter 
for reconstruction whereas the length of reconstruction 
filter differs from the synthesis filter in case of 
biorthogonal wavelets. The selection of wavelet function 
is crucial for performance in image compression [8]. 
Important properties of wavelet functions in image 
compression applications are compact support, symmetry, 
orthogonality, regularity and degree of smoothness [9] 
[10]. There are a number of basis that decides the 
selection of wavelet for image compression. Since the 
wavelet produces all wavelet functions used in the 
transformation through translation and scaling, it 
determines the   characteristics   of   the   resulting   
wavelet   transform. Therefore, the details of the 
particular application should be taken into account and 
the appropriate wavelet should be selected in order to use 
the wavelet transform effectively for image compression. 

Daubechies Wavelet (DB), Biorthogonal Wavelet 
(BIOR), Coiflet Wavelet (COIF) and Symlet (SYM) are 
analyzed in literature [6]. The DB, BIOR, and COIF 
wavelets are families of orthogonal wavelets that are 
compactly supported. These wavelets are capable of 
perfect reconstruction. DB is asymmetrical while COIF is 
almost symmetrical. Scaling and wavelet functions for 
decompositions and reconstruction in the BIOR   family 
can   be   similar   or   dissimilar.   Daubechies wavelets 
are the most popular wavelets and represent the 
foundation of wavelet signal processing and are used in 
numerous applications. The wavelets are then selected 
based on their shape and their ability to compress the 

image in a particular   application.   The   most   
promising   results   for grayscale compression are 
provided by Biorthogonal wavelet filter. The 
Biorthogonal wavelets can use filters with similar or 
dissimilar order for decomposition and reconstruction. 
Therefore Biorthogonal wavelet is parameterized by two 
numbers and filter length is {max (2Nd, 2Nr) +2}. 
Higher filter orders give higher degree of smoothness 
[20]. 
 
5. Methodology of Image Compression 

An image was selected & different wavelets with 
different filter orders; threshold values of 10 to 100 were 
applied empirically by the variation of 10. Different levels 
of decomposition from 1 to 10 were applied. Finally, we 
conclude that the best results are obtained for level 4 of 
decomposition at threshold 10, in each case of all images 
& each wavelet family. 

6. Results and Discussion 

Wavelet family CR PSNR 

Db 98.88 49.58 

Symlet 97.276 56.27 

Biorthogonal 98.87 53.46 

coiflet 98.88 48.88 

Best results of different wavelet family for bird image 
The working methodology is tested on standard test 
images, Quality of the compressed image depends on 
image content & size and the compressed image degrades 
as per level of decomposition because at each level of 
decomposition there is some loss of energy. It is also 
found that quality of the degrades rapidly with increasing 
threshold.  
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