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Abstract 
Speech recognition is a multileveled pattern recognition task, in which acoustical signals are examined 

and structured into a hierarchy of sub word units (e.g., phonemes), words,phrases, and sentences. Each level 

may provide additional temporal constraints, e.g., known word pronunciations or legal word sequences, which 

can compensate for errors or uncertainties at lower levels. This hierarchy of constraints can best be exploited by 

combining decisions probabilistically at all lower levels, and making discrete decisions only at the highest 

level.Dynamic time warping is a unessential concept used primarily for applications where low computation is 

required. The paper describes a system based on dynamic programming concept[1]. The software was built using 

Mat lab 8.01. 

Index Terms--- Dynamic time warping, dynamic programming, Euclidiandistance. Speech recognition, Mel 

cepstrum , Mel frequency 
 

1. Introduction 

In speech recognition, the main goal of the 

feature extraction step is to compute a 

parsimonious sequence of feature vectors providing 

a compact representation of the given input signal. 

The feature extraction is usually performed in three 

stages. The first stage is called the speech analysis 

or the acoustic front end. It performs some kind of 

spectrum temporal analysis of the signal and 

generates raw features describing the envelope of 

the power spectrum of short speech intervals. The 

second stage compiles an extended feature vector 

composed of static and dynamic features. Finally, 

the last stage (which is not always present) 

transforms these extended feature vectors into more 

compact and robust vectors that are then supplied 

to the recognizer. Although there is no real 

consensus as to what the optimal feature sets 

should look like, one usually would like them to 

have the following properties: they should allow an 

automatic system to discriminate between different 

through similar sounding speech sounds, they 

should allow for the automatic creation of acoustic 

models for these sounds without the need for an 

excessive amount of training data, and they should 

exhibit statistics which are largely invariant cross 

speakers and speaking environment. 

2. Simple Model of Speech Production 
The production of speech can be separated 

into two parts: Producing the excitation signal and 

forming the spectral shape. Thus, we can draw a 

simplified model of speech production as shown 

below : 

 
Figure 1: A simple model of speech production 

 

This model works as follows: Voiced 

excitation is modeled by a pulse generator which 

generates a pulse train (of triangle–shaped pulses) 

with its spectrum given by P (f). The unvoiced 

excitation is modeled by a white noise generator 

with spectrum N (f). To mix voiced and unvoiced 

excitation, one can adjust the signal amplitude of 

the impulse generator (v) and the noise. Thus from 

the above model we get :- 

P(f) = Voiced excitation pulse train 

N(f)= Unvoiced excitation (white noise) 

H(f)= Transfer function of vocal tract 

R(f)= transfer function of lip emmision  

S(f)= Final voice signal 

 

2.1 Human Speech Coefficients 

The human ear does not show a linear 

frequency resolution but builds several groups 

of frequencies and integrates the spectral 

energies within a given group. Furthermore, 

the mid-frequency and bandwidth of these 

groups are non–linearly distributed. The non–

linear warping of the frequency axis can be 
modeled by the so–called Mel-scale[2]. The 

frequency groups are assumed to be linearly 
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distributed along the Mel-scale. The so–called 

Mel–frequency f_ Mel can be computed from the 

frequency f as follows: 

f_ Mel (f)=2595∙log10(1+f/(700 Hz))                            
(1) 

The human ear has high frequency 

resolution in low–frequency parts of the spectrum 

and low frequency resolution in the high–frequency 

parts of the spectrum. The coefficients of the power 

spectrum [|V (n) |]^2 are now transformed to reflect 

the frequency resolution of the human ear. 

2.2 Cepstrum Wise Coefficients 
The direct computation of the power 

spectrum from the speech signal results in a 

spectrum containing “ripples” caused by the 

excitation spectrum X(f). Depending on the 

implementation of the acoustic preprocessing 

however, special transformations are used to 

separate the excitation spectrum X (f) from the 

spectral shaping of the vocal tract H (f). Thus, a 

smooth spectral shape (without the ripples), which 

represents H (f) can be estimated from the  

 

S(f) = X(f)•H(f)•R(f)=H(f)•U(f)(2) 

 

We can now transform the product of the 

spectral functions to a sum by taking the logarithm 

on both sides of the equation: 

log10 [(S(f)] =log10[H(f)]∙[U(f)]=log10 [H(f)] 

+log1o[U(f)] 

(3) 

This holds also for the absolute values of the power 

spectrum and also for their squares: 

log10 [(|S (f)|2 ] =log10 [(|H (f)|2∙|U (f)|2] 

=log10 [ |H (f)|2] +log10 [|U (f)|2] (4) 

In figure 2 we see an example of the log power 

spectrum, which contains unwanted ripples caused 

by the excitation signal. 

As we recall, it is necessary to compute 

the speech parameters in short time intervals to 

reflect the dynamic change of the speech signal. 

Typically, the spectral parameters of speech are 

estimated in time intervals of 10 ms[3]. First, we 

have to sample and digitize the speech signal. 

Depending on the implementation, a sampling 

frequency f_s between 8 kHz and 16 kHz and 

usually a 16 bit quantization of the signal amplitude 

is used.After digitizing the analog speech signal, 

we get a series of speech samples  s(k∙∆t) where ∆t 

= 1/f_s or, for easier notation, simply  

s(k).s ̂(d)=[FT]^(-1) {log⁡(|S(f)|^2 ) } 

=[FT]^(-1) {log(|H(f)|^2 ) }+[FT]^(-1){log(|U(f)|^2 

)} 

(5) 

 

Figure 2: Log power spectrum of the vowel /a: / 

(f_s = 11 kHz). The ripples in the spectrum are 

caused by X (f) 

The inverse Fourier transform brings us 

back to the time–domain (d is also called the delay 

or frequency), giving the so–called cepstrum (a 

reversed “spectrum”)[4]. The resulting cepstrum is 

real–valued, since [|U(f)|]^2 and [|H(f)|]^2 are both 

real-valued and both are even: [|U(f)|]^2= [|U(-

f)|]^2 and [|H(f)|]^2=[|H(-f)|]^2. Applying the 

inverse DFT to the log power spectrum coefficients 

log[(|V (n)|)^2 ] yields: 

 

Figure 3: Cepstrum of the vowel /a: / (f_s = 11 

kHz, N = 512). The ripples in the spectrum 

result in a peak in the cepstrum 

2.3  Mel Cepstrum 
Now that we are familiar with the 

cepstrum transformation and cepstrumsmoothing, 

we will compute the Mel cepstrum commonly used 

in speech recognition. As stated above, for speech 

recognition, the Mel spectrum is used to reflect the 

perception characteristics of the human ear.  In 

analogy  to computing the cepstrum,  we now take  

the logarithm  of the Mel power spectrum  given by 

:-  𝐺(𝑘) = ∑ 𝜂kn
𝑁/2
𝑛=0 |𝑉(𝑛)|2  ; 𝑘 = 0,1,2 … … (6) 

 (instead of the power  spectrum  itself ) and  

transform  it  into  the frequency  domain  to 

compute the so–called Mel cepstrum. Only the first 

Q (less than 14) coefficients of the Mel cepstrum 
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are used in typical speech recognition systems. The 

restriction to the first Q coefficients reflects the 

low–pass filtering process as described above. 

Since the Mel power spectrum is 

symmetric due to (6), the Fourier-Transform can be 

replaced by a simple cosine transform: 

c(q) = ∑ log(G(k))

κ−1

k=0

∙ cos (
πq(2k + 1)

2К
) ; q

= 0, 1, … , 𝒬 − 1  

(7) 

While successive coefficients G(k) of the Mel 

power spectrum are correlated, the Mel Frequency  

Cepstrum Coefficients (MFCC)[5] resulting from 

the cosine transform (7) are decorrelated.   

 

Figure 4: Mel cepstrum of an isolated word 

 

Fig 5 Log power spectrum of word “HELLO” 

 

Fig.6 Log energyspectrum of word “HELLO” 

 

 

Fig.7 Log Mel power spectrum of word 

“HELLO” 

3. Dynamic time warping 
Our speech signal is represented by a 

series of feature vectors which are computed every 

10 ms. A whole word will comprise dozens of 

those vectors, and we know that the number of 

vectors (the duration) of a word will depend on 

how fast a person is speaking. Therefore, our 

classification task is different from what we have 

learned before. In speech recognition, we have to 

classify not only single vectors, but sequences of 

vectors. Let’s assume we would want to recognize 

a few command words or digits. For an utterance of 

a word w which is T_X vectors long, we will get a 

sequence of vectors X ={x _0, x _1... x _(X-1)} 

from the acoustic preprocessing stage. What we 

need here is a way to compute a “distance” 

between this unknown sequence of vectors X  and 

known sequences of vectors W _k={w _(k0,) w 

_(k1,)  …,w _(kT_(W_k )  ) } which are prototypes 

for the words we want to recognize. Let our 

vocabulary (here: the set of classes Ω) contain V 

different words w_0,w_1,...w_(V-1). In analogy to 

the Nearest Neighbor classification task from 

section 3, we will allow a word w_v (here: class 

w_v∈Ω) to be represented by a set of prototypes 

W_(k,ω_v  ),k=0,1,…,(K_(ω_v )-1) to reflect all 

the variations possible due to different 

pronunciation or even different speakers. 

Fig 8: Possible assignment between vector pairs 

of X and W 

3.1 Distance between Two Sequences of       

Vectors 
Classification of a spoken utterance would be 

easy if we had a good distance measure 𝐷(𝑋̃ , 𝑊̃) 

at hand (in the following, we will skip the 

additional indices for ease of notation). What 

should the properties of this distance measure be? 

The distance measure we need must: 

1. Measure the distance between two 

sequences of vectors of different length 

(𝑇𝑋and 𝑇𝑊, that is) 
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2. While computing the distance, find an 

optimal assignment between the individual 

feature vectors of 𝑋̃ and 𝑊̃ 

3. Compute a total distance out of the sum of 

distances between individual pairs of 

feature vectors of 𝑋̃ and 𝑊̃. 

 

3.2 Comparing Sequences With Different 

Lengths 
The main problem is to find the optimal 

assignment between the individual vectors of 𝑋̃ and 

𝑊̃. In Fig. 3.16 we can see two sequences 𝑋̃ and 𝑊̃ 

which consist of six and eight vectors, respectively. 

The sequence 𝑊̃ was rotated by 90 degrees, so the 

time index for this sequence runs from the bottom 

of the sequence to its top. The two sequences span 

a grid of possible assignments between the vectors. 

Each path through this grid (as the path shown in 

the figure) represents one possible assignment of 

the vector pairs. For example, the first vector of 𝑋̃ 

is assigned the first vector of 𝑊̃ , the second vector 

of 𝑋̃ is assigned to the second vector of 𝑊̃, and so 

on.  

Fig. 9 shows as an example the following 

path 𝑃 given by the sequence of time index pairs of 

the vector sequences[6](or the grid point indices, 

respectively): 

P = {g1, g2, . . , gLp
}

= {(0,0), (1,1), (2,2), (5,3)}                  (8) 

The length 𝐿𝑃  of path 𝑃 is determined by 

the maximum of the number of vectors contained in 

𝑋̃ and𝑊̃ . The assignment between the time indices 

of 𝑊̃  and 𝑋̃  as given by 𝑃  can be interpreted as 

“time warping” between the time axes of 𝑊̃and 𝑋̃ . 

In our example, the vectors𝑥⃗2 , 𝑥⃗3  and 𝑥⃗4 were all 

assigned to 𝑤⃗⃗⃗2, thus warping the duration of 𝑤⃗⃗⃗2 so 

that it lasts three time indices instead of one. By 

this kind of time warping, the different lengths of 

the vector sequences can be compensated. 

For the given path 𝑃, the distance measure 

between the vector sequences can now be 

computed as the sum of the distances between the 

individual vectors. Let 𝑙 denote the sequence index 

of the grid points. Let 𝑑(𝑔𝑙)  denote the vector 

distance 𝑑 (𝑥⃗2, 𝑤⃗⃗⃗𝑗)  for the time indices 𝑖  and 𝑗 

defined by the grid point 𝑔𝑙  = (𝑖, 𝑗)  (the distance 

𝑑 (𝑥⃗2, 𝑤⃗⃗⃗𝑗)  could be the Euclidean distance from eq 

(8). Then the overall distance can be computed as: 

D(X̃, W̃, P)

= ∑ d

LP

l=1

(gl)                                                                (9) 

3.3 Finding the Optimal Path 
As we stated above, once we have the path, 

computing the distance D is a simple task. How do 

we find it? The criterion of optimality we want to 

use in searching the optimal path poptshould be to 

minimize𝐷(𝑋̃, 𝑊̃, 𝑃): 

Popt

= arg 

min
P

{D(X̃, W̃, P)}                                                    (10) 

Fortunately, it is not necessary to compute 

all possible paths P and corresponding distances 

𝐷(𝑋̃, 𝑊̃, 𝑃)to find the optimum. 

Out of the huge number of theoretically possible 

paths, only a fraction is reasonable for our 

purposes. We know that both sequences of vectors 

represent feature vectors measured in short time 

intervals. Therefore, we might want to restrict the 

time warping to reasonable boundaries: The first 

vectors of 𝑋̃and 𝑊̃ should be assigned to each other 

as well as their last vectors. For the time indices in 

between, we want to avoid any giant leap backward 

or forward in time, but want to restrict the time 

warping just to the “reuse” of the preceding 

vector(s) to locally warp the duration of a short 

segment of speech signal. With these restrictions, 

we can draw a diagram of possible “local” path 

alternatives[7] for one grid point and its possible 

predecessors (of course, many other local path 

diagrams are possible): 

 
Fig. 9: Local path alternatives for a grid point 

Note that Fig. 9 does not show the 

possible extensions of the path from a given point 

but the possible predecessor paths for a given grid 

point. As we can see, a grid point (𝑖, 𝑗) can have the 

following predecessors: 

1. (𝑖 − 1, 𝑗0) : Keep the time index 𝑗  of 𝑋̃ 

while the time index of 𝑊̃ is incremented. 

2. (𝑖 − 1, 𝑗 − 1): Both time indices of 𝑋̃  and 

𝑊̃ are incremented. 

3. (𝑖, 𝑗 − 1): Keep of the time index 𝑖 of 𝑊̃ 

while the time index of 𝑋̃ is incremented. 

All possible paths 𝑃 which we will 

consider as possible candidates for being the 

optimal path 𝑃𝑜𝑝𝑡  can be constructed as a 

concatenation of the local path alternatives as 

described above. To reach a given grid point (𝑖, 𝑗) 
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from (𝑖 − 1, 𝑗 − 1), the diagonal transition involves 

only the single vector distance at grid point (𝑖, 𝑗) as 

opposed to using the vertical or horizontal 

transition, where also the distances for the grid 

points (𝑖 − 1, 𝑗)  or (𝑖, 𝑗 − 1 ) would have to be 

added. To compensate this effect, the local distance 

𝑑( 𝑤⃗⃗⃗𝑖 , 𝑥⃗𝑗) is added twice when using the diagonal 

transition. 

 

3.4Bellman’s Principle[8] 
Now that we have defined the local path 

alternatives, we will use Bellman’s Principle to 

search the optimal path 𝑃𝑜𝑝𝑡 .Whenapplied to our 

problem the , Bellman’s Principle states the 

following: 

If Popt  is the optimal path through the 

matrix of grid points beginning at (0, 0) and ending 

at (TW−1, TX−1), and the grid point (i, j) is part of 

path Popt, then the partial path from (0, 0) to (i, j) is 

also part of Popt. From that, we can construct a way 

of iteratively finding our optimal path 𝑃𝑜𝑝𝑡 : 

According to the local path alternatives diagram we 

chose, there are only three possible predecessor 

paths leading to a grid point(𝑖, 𝑗): The partial paths 

from (0, 0) to the grid points (𝑖 − 1, 𝑗), (𝑖 − 1, 𝑗 −
1) 𝑎𝑛𝑑 (𝑖, 𝑗 − 1)). 

Let’s assume we would know the optimal 

paths (and therefore the accumulated distance 𝛿(. ) 

along that paths) leading from (0, 0) to these grid 

points. All these path hypotheses are possible 

predecessor paths for the optimal path leading from 

(0, 0)to(𝑖, 𝑗). 

Then we can find the (globally) optimal 

path from (0, 0)  to grid point (𝑖, 𝑗)  by selecting 

exactly the one path hypothesis among our 

alternatives which minimizes the accumulated 

distance 𝛿(𝑖, 𝑗)  of the resulting path from 

(0, 0)to(𝑖, 𝑗). 

The optimization we have to perform is as follows: 

 

𝛿(𝑖, 𝑗) = min {

𝛿(𝑖, 𝑗 − 1) + 𝑑(𝑤⃗⃗⃗𝑖 , 𝑥⃗𝑗)

𝛿(𝑖 − 1, 𝑗 − 1) + 2 ∙ 𝑑(𝑤⃗⃗⃗𝑖 , 𝑥⃗𝑗)

𝛿(𝑖 − 1, 𝑗) + 𝑑(𝑤⃗⃗⃗𝑖 , 𝑥⃗𝑗)

 

(11) 

By this optimization, it is ensured that we 

reach the grid point (𝑖, 𝑗)  via the optimal path 

beginning from (0, 0)  and that therefore the 

accumulated distance 𝛿(𝑖, 𝑗)  is the minimum 

among all possible paths from (0, 0) to (𝑖, 𝑗).Since 

the decision for the best predecessor path 

hypothesis reduces the number of paths leading to 

grid point (𝑖, 𝑗) to exactly one, it is also said that 

the possible path hypotheses are recombined during 

the optimization step. 

Applying this rule, we have found a way 

to iteratively compute the optimal path from point 

(0, 0)  to point (𝑇𝑊−1, 𝑇𝑋−1) , starting with point 

(0, 0): Initialization: For the grid point(0, 0), the 

computation of the optimal path is simple: It 

contains only grid point (0, 0) and the accumulated 

distance along that path is simply𝑑(𝑤⃗⃗⃗0, 𝑥⃗0). 

Iteration: Now we have to expand the computation 

of the partial paths to all grid points until we reach 

(𝑇𝑊−1, 𝑇𝑋−1) : According to the local path 

alternatives, we can now only compute two points 

from grid point (0, 0): The upper point (1, 0), and 

the right point (0, 1). Optimization of (r) is easy in 

these cases, since there is only one valid 

predecessor: The start point (0.0) . So we add 

𝛿(0, 0) to the vector distances defined by the grid 

points (1, 0)  and (0, 1)  to compute 

𝛿(1, 0) and 𝛿(0, 1) . Now we look at the points 

which can be computed from the three points we 

just finished. For each of these points (𝑖, 𝑗) , we 

search the optimal predecessor point out of the set 

of possible predecessors (Of course, for the 

leftmost column (𝑖, 0) and the bottom row (0, 𝑗) the 

recombination of path hypotheses is always trivial). 

That way we walk trough the matrix from bottom-

left to top-right. 

Termination: 𝐷(𝑊̃, 𝑋̃ )  =  𝛿(𝑇𝑊−1, 𝑇𝑋−1)  is the 

distance between 𝑊̃ and𝑋̃ . 

Fig. 10 shows the iteration through the 

matrix beginning with the start point(0, 0).Filled 

points are already computed, empty points are not. 

The dotted arrows indicate the possible path 

hypotheses over which the optimization (r) has to 

be performed. The solid lines show the resulting 

partial paths after the decision for one of the path 

hypotheses during the optimization step. Once we 

reached the top–right corner of our matrix, the 

accumulated distance 𝛿(𝑇𝑊−1, 𝑇𝑋−1) is the distance 

𝐷(𝑊̃, 𝑋̃) between the vector sequences. If we are 

also interested in obtaining not only the distance 

𝐷(𝑊̃, 𝑋̃), but also the optimal path 𝑃, we have — 

in addition to the accumulated distances — also to 

keep track of all the decisions we make during the 

optimization steps (3.46). The optimal path is 

known only after the termination of the algorithm, 

when we have made the last recombination for the 

three possible path hypotheses leading to the top– 

right grid point(𝑇𝑊−1, 𝑇𝑋 −1). Once this decision is 

made, the optimal path can be found by reversely 

following all the local decisions down to the 

origin (0, 0) . This procedure is called 

backtracking[9].Now all we have to do is to run the 

DTW algorithm for each time index j and along all 

columns of all prototype sequences. At the last time 

slot (T_W-1) we perform the optimization step for 

the virtual grid point, i.e, the predecessor grid point 

to the virtual grid point is chosen to be the 

prototype word having the smallest accumulated 

distance. Note that the search space we have to 

consider is spanned by the length of the unknown 

vector sequence on one hand and the sum of the 
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length of all prototype sequences of all classes on 

the other hand.However,by the reformulation of the 

DTW classification we learned a few things: 

1. The DTW algorithm can be used for real–

time computation of the distances[10] 

2. The classification task has been integrated 

into the search for the optimal path 

3. Instead of the accumulated distance, now 

the optimal path itself is important for the 

classification task 

 

4. Results 
To verify the approach of dynamic 

programming, several graphical user interface 

programs were created in Matlab. Several 

snapshots of them were shown earlier, the final 

program consists of a graphical user interface in 

which the user will input four words and the 

program will then detect the word spoken by the 

user and display it on the screen. Snapshot of these 

are shown as below for reference. Fig 10 shows the 

constructed user interface in which two words can 

be spoken and then they could be compared by 

using the distance algorithm discussed earlier. In 

fig 11 and fig 12 we have shown another graphical 

user interface in which the user speaks and 

sequence of words which are recognized and 

displayed by our system. 

 

Fig.10: Constructed graphical user interface for 

calculating distance between two words 

 

 

Fig.11: Output of program showing the 

utterance of word “TWO” 

 

 

Fig.12: Output of program showing the 

utterance of word “THREE” 

5.Conclusion 
This paper shows the reslut of a system 

which implemented automatic cpeech recognition 

system based on cepstral coefficiecnt and dynamic 

programming method . The implemented graphical 

user interface and several results have been shown . 

It has also been shown that the distance between 

two vectors can be analyzed using various 

techniques especially the Bellmans principle. In the 

first part of the paper it has been shown that how 

cepstrum technique can be used to convert a speech 

signal into a sequence of ventors. The authors 

successfully developed and tested this protype 

system with reasonable accuracy Lastly, future 

work may evaluate the effectiveness of cross 

lingual adaptation in the context of an application, 

for examplea personalized speech-to-speech 

translation system. 
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