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ABSTRACT 
Nickel oxide thin films have been grown by reactive magnetron RF sputtering. The optical band gap has been 

estimated using Tauc equation and found to be decreased as the Ge dopant increase. The XRD results have 

suggested that the crystallinity of the NiO thin films has changed after doping with Ge, the (111) phase of NiO 

has disappeared after doping and another phase of NiO has exhibited (200) associated with Ge phase (220). This 

has suggested that the Ge dopants have sufficiently incorporated into the NiO lattice structure and changing the 

structure order and crystallinity. AFM and SEM have shown that surface morphology has changed after doping 

with Ge with rougher and grainier surface. EDX Analysis confirms the change in the lattice structure. The 

electrical conductivity has conducting a temperature dependency behavior. Seebeck coefficient has revealed that 

NiO thin film is a p-type semiconductor; while after doping it has changed to be n-type semiconductor as the 

Seebeck coefficient has become negative. Increasing the electrical conductivity without affecting the Seebeck 

coefficient has enhanced the power factor. 
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INTRODUCTION  
Nickel oxide (NiO) is considered as an attractive thin film due to its properties such as excellent chemical 

stability, electrical, optical and magnetic. NiO has been widely used in electrochromic display devices [1,2], 

antiferromagnetic material [3,4] and sensors [5,6]. NiO is usually considered as a p-type semiconductor films 

with a wide band-gap energy in the range from 3.6-4.0eV [7,8]. NiO thin films have been prepared using 

different physical and chemical techniques [9,10], among these several methods, reactive sputtering has been 

most widely used [11-13]. Thermoelectric power generators are based on Seebeck effect; this effect concerns 

the generation of the electromotive force (voltage) between the two ends of the thermoelectric device under a 

certain temperature difference. Once this device is connected to an electric circuit, the electric current flows 

through the circuit to generate electric power, and therefore heat can be converted into electricity [14]. 

Thermoelectric generators have the ability to convert the wasted heat into electrical energy without producing 

CO2, toxic substances or other emissions [15]. Previously, the application of thermoelectric was based on bulk 

materials; however, by increasing combination of a higher heat flux with a higher package density in 

microelectronic devices, it is becoming more challenging to provide sufficient heat dissipation from the package 

[16]. As a result, thin film based thermoelectric devices are essential due to their properties such as efficient 

cooling capacity, small area and higher efficiency compared to devices made of bulk materials due to the 

stronger quantum confinement compared to that of bulk materials based thermoelectric devices [15-17]. The 

main challenge in improving the thermoelectric propertiesis that thethermoelectric parameters Seebeck 

coefficient (S), Electrical conductivity (σ) and thermal conductivity (k) are strongly interdependent [18]. 

Therefore, high thermoelectric performance could be obtained by decreasing the lattice thermal conductivityor 

increasing the power factor [18]. In the current study, the effects of adding Ge dopant to NiO thin films and their 

effects on the morphological, optical and thermoelectric properties have been investigated. Doping p-type NiO 

thin film with n-type semiconductor Ge, which is one of the group IV atoms, is expected to be harmless to the 

use of the oxide-based device [19]. The outcome of the thermoelectric is found to be effected by changing the 

thin film properties from p-type to n-type after doping. To the best of the authors’ knowledge, this is the first 

attempt of doping NiO with Ge using reactive magnetron sputtering. 

 

PREPARATION OF GERMANIUM DOPED NICKEL OXIDE 
NiO thin Filmswere prepared using reactive magnetron sputteringon glass substrates [20]. The substrate was 

fixed at a distance of about 8mm from the target. The deposition was performed under vacuum pressure of 

0.015mbar and substrate temperature of 300k for 20 minutes.  The power of RF source was 150Watt. Doping of 

NiO by germanium (Ge)with different concentrations,1%,2% and 3% has been achieved under the same 

conditions. All the samples were subjected to heat treatment after the preparation at 625oC under vacuum. 
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RESULTS AND DISCUSSIONS 
 

3.1 Optical properties 

The optical properties of the studied thin films have been measured by Perkin–Elmer Lambda UV-visible 

spectrophotometer. NiO thin film is a p-type semiconductor with a direct band gap transition, a plot of the αhυ2 

versus the photon energy of the absorbed light gives the band gap [21-23]. The absorption coefficient (α) of NiO 

thin films has been estimated from the optical transmittance employing the following equation [24]: 

α =
2.303

d
× log⁡(

1

T
)     (1) 

 

 

 
Fig.1: Tauc plot for energy band determination for the NiO thin films, (A) un-doped, (B) 1%Ge, (C) 2%Ge and (D) 3%Ge 

 

where, T is the transmittance and d is the thickness of the NiO films. The absorption coefficient can also be used 

to determine the energy band gap (Eg) of the studied thin films using Tauc equation [25]: 

αhν = A(hν − Eg)
n     (2) 

 

where, h is the Planck’s constant, υ is frequency, A is constant and n is a value depends on the nature of 

transition. When n = 1/2 the band gap transition is allowed direct and the extrapolation of the linear region of 

(αhυ)2 versus hυ curve provides the direct energy band gap [24]. The direct band gap for NiO-based thin films 

has shown an increase after the addition of Ge dopant. Fig.1A shows the estimation of the band gap for un-

doped NiO thin film using Tauc plot, the resulted band gap (Eg) from this plot is about 3.65eV. The integration 

of 1%Ge (Fig.1B), 2%Ge (Fig.1C) and 3%Ge (Fig.1D) into the NiO thin films has resulted in slight decrease in 

Eg to 3.62eV, 3.62 and 3.6eV, respectively. This change could be attributed to the lattice constant change of NiO 

structure [19]. 

 

3.2 Morphological properties 

The surface morphological propertiesof the deposited thin films were recorded using NanoSurf-AFM in contact 

mode as shown in Fig.2. The un-doped NiO thin films have exhibited uniformly distributed surface grains as 
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demonstrated in the AFM images. The grain size and the surface morphology have changed noticeablyafter 

doping with Ge dopant and with increasing the dopant concentration.  

 

 
Fig.2: AFM characteristics for the NiO-based thin films with and without adding Ge at different concentrations 
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Fig.3: SEM and EDX characteristics for the NiO-based thin films with and without adding Ge at different concentrations 

 

Un-doped NiO thin film has shown smooth surface morphology; this smooth morphology has changed to 

rougher and grainier surface with grains appeared bigger than the un-doped NiO thin film. Moreover, the 

surface roughness has increased after doping NiO thin film with 3% Ge, clear big grains appeared on the surface 

topography which might result in changing the lattice constant of NiO structure as suggested by Artia and co-

authors [19]. This change in the structure topographies is found to be beneficial for higher transmittance 
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properties [19]. Furthermore, SEM was carried out in order to evaluate the structure components using Energy-

dispersive X-ray spectroscopy (EDX) analysis which was employed to estimate the oxidation magnitude and the 

Ge doping of NiO nanostructures(see Fig.3). Due to the high electron energy beam used in SEM 

characterization, it is clear that the films have demonstrated obvious damage in some places. EDX analysis for 

the un-doped NiO shows higher oxygen content, this suggests that Ni has higher oxidation rate during the 

preparation process. Upon incorporation of Ge dopant into the NiO thin films, the oxygen content has reduced 

and the Ge content has increased slightly with increasing the doping concentration. Therefore, due to the low 

percentage of Ge dopants, it can be suggested that the Ge dopants have sufficiently incorporated into the NiO 

lattice structure [26].  

 

3.3 Structural properties: 

The structural properties of the NiO-based thin films were analyzed by X-ray diffractometer (Philips EXPERT 

MPD), Cu Kα radiation (λ=1.54 Å), the results are presented in Fig.4. The un-doped based NiO filmhas 

demonstrated a sharp peak related to the (111) phase at 37o [27]. Upon doping NiO thin films with Ge, the latter 

peak has disappeared and another peak at around 42o related to the phase (200) [28] has been observed which is 

attributed to NiO. Moreover, a new peak at around 48o related to the phase (220) has been observed [29]; this 

peak has correlated to Ge.There was a tendency with increasing Ge contents is observed, the two peaks (200-

NiO) and (220-Ge) have demonstrated different diffraction intensities. Higher doping concentration (3%Ge) has 

resulted in lower peak intensities which have been attributed to the change in the structure order and crystallinity 

[19, 26].  

 
Fig.4: XRD patterns for the NiO-based thin films with and without adding Ge at different concentrations 
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3.4 Electrical conductivity and activation energy  
The electrical conductivity (σ) of the NiO based thin filmshas been calculated by using the following equation 

[30]: 

𝜎 =
1

𝑅

𝑙

𝑤.𝑡
      (3) 

 

where, R is the resistance of the thin film, w is the width, t is the film thickness, l is the distance between two 

(Al) poles. The conductivity of the un-doped NiO thin filmhasdecreased by increasing temperature, whereas the 

Ge-doped NiO have demonstrated totally different behavior;the electrical conductivity has 

increasedbydecreasing the temperature (see Fig.5a). This could be attributed to the increase in current with 

increasing temperature; heating causes more electrons to be freed (concentration of carriers increased) as they 

have more energy (from the thermal energy) to cross the band gap [31]. Furthermore, increasing the Ge content 

within NiO thin films has resulted in increasing the electrical conductivity; however, higher concentration of Ge 

(3%) has resulted in lower electrical conductivity which might be ascribed to the lattice constant change of NiO 

structure [19, 26]. 

 

 
Fig.5: (a) Variation in the electrical conductivity with temperature and (b) Arrhenius plot of resistance for determination 

the activation energy, for NiO based thin films. 

 

For the determination of the activation energy level (EA) of un-doped and Ge-doped NiO thin films, the 

temperature dependence of dark electrical resistance has been measured and the data were fitted to Arrhenius 

equation [32]: 

R = Roexp⁡(
EA

kBT
)     (4) 

where Ro(is the pre-exponential factor [33]) is a parameter dependent on the sample characteristics (thickness, 

structure, etc.) and KB is the Boltzmann constant. Fig.5b shows EA of NiO based thin films which have 

increased from 0.28eV-0.6eVby doing with Ge and upon increasing temperature from 70oC -150oC. When 

temperature has increased from 150oC -250oC, EA has shown an increase from 0.25eV to 1.17eV as illustrated in 

Table 1. 

 

3.5 Seebeck coefficient: 

In order to generate a temperature gradient along with the sample, two thermocouples at the ends ofthe sample 

were placed to record the generated temperature difference between the two ends of the sample.Afterward, a hot 

junction and a cold junctionwere created at each end.Generally, Seebeck effect is the impact of charge carrier 

diffusion where the charge carriers are pushed towards the cold side until voltage is built up. In case of ideal 

thermoelectric material, Seebeck coefficient should be large, produce large voltage and has low electrical 

resistivity to reduce Joule heating during operation, and low thermal conductivity to allow establishing 

temperature differences [34]. Seebeck effect could be defined by the following equation: 

𝑆 =
𝑑𝑉

𝑑𝑇
      (5) 

 

A graph of the measured thermoelectric voltage versus temperature difference was plotted as shown in Fig.6. 

The slope of the curve gives the Seebeck coefficient of the thin film.The produced voltage as a function of 
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temperature for the un-doped NiO is found to increase exponentially with temperature; at transition 

temperatures (Tt) occur between 170oC-190oC (green highlighted in Fig.6), Seebeck coefficient has increased 

dramatically. Doping NiO with Ge has resulted in pulse-like voltage behavior with the same transition 

temperature (Tt) between 170-190oC (green highlighted in Fig.6). For this reason the temperatures below and 

above this range have been used to determine two different slops for two different regions. Seebeck coefficient 

of the un-doped NiO thin filmhas demonstrated positive value at both temperatures below and aboveT t.This is 

evidence that NiO is a p-type semiconductor. Whereas, doping NiO with n-type dopant (Ge) has changing the 

semiconducting type to become n-type semiconductor, as indicated by the negative Seebeck coefficientfor both 

regions [35,36], see Table 1. 

 
Table 1: The calculated parameters related to the NiO with and without doping by Ge 

Thin film Eg (eV) 
EA (eV) Seebeck coefficient (S) (μV.K-1) 

Below Tt Above Tt Below Tt Above Tt Average 

Un-doped NiO 3.65 0.28 0.25 0.2 42 - 

1%Ge doped NiO 3.62 0.4 1.11 -3.6 -3 -3.3±(-0.3) 

2%Ge doped NiO 3.62 0.36 1.02 -2.1 -2.5 -2.3±(-0.3) 

3%Ge doped NiO 3.6 0.6 1.17 -3.1 -3 -3.05±(-0.05) 

 

Usually, the negative Seebeck coefficient is indicated that the conduction band is slightly shifted toward Fermi 

level.This transition from p-type to n-type semiconductor has altered the density of states near the Fermi level, 

and removes the dependency of the unfavorable coupling between Seebeck coefficient and electrical 

conductivity [37]. As it has been mentioned before, the electrical conductivity has increased after doping with 

Ge, whereas Seebeck coefficient has shown more or less the same value for all the doping concentrations as 

shown in Table 1 (average value of Seebeck coefficient are illustrated in the Table 1).   

 

 
Fig.7: The variation of the Seebeck voltage versus the temperature difference across thesample 

 

3.6 Power factor: 

Power factor (PF) has been calculated using the following equation [38]: 

𝑃𝐹 = 𝜎𝑆2     (6) 

 

As indicated by Seebeck coefficient results, no relation has been observed between electrical conductivity and 

Seebeck coefficient. Instead, PF has demonstrated an increase by increasing the Ge doping concentration as 
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shown in Fig.7. A slight increase in the PF for the un-doped NiO has been observed; while the 2%Ge-doped 

NiO has exhibited the highest obtained PF. This enhancement could be ascribed to the improved electrical 

conductivity. High power factor (PF) usually achieved by improving mobility, which is resulted from the 

variation in the carrier scattering mechanism [39]. On the other hand, the reduction in carrier mobility can 

deteriorate the electrical conductivity; therefore, increasing the electrical conductivity is the key factor to 

enhance PF [40, 41]. On the other hand, the coupled between Seebeck coefficient and electrical conductivity is 

via carrier concentration rather than charge carriers’ mobility. Consequently, the improved mobility will 

increase the electrical conductivity without affecting the Seebeck coefficient, thus considerably improving the 

power factor [39]. 

 

 
Fig.8: The variation of the power factor versus the temperature difference across the sample 

 

CONCLUSION 
NiO thin films have been investigated with and without doping with Ge by different concentration in order to 

use these layers in thermoelectric applications. The optical band gap has demonstrated a decrease after doping 

with Ge from 3.65eV (un-doped NiO thin film) to 3.6eV (3%Ge doped NiO thin film). The morphological 

features have shown rougher and grainier surface roughness after doping and have suggested a change in the 

structure. The latter has been confirmed by XRD with different phase appeared after doping and the XRD 

suggest that a change in lattice structure is occurred. The negative Seebeck coefficient has confirmed the 

transformation of NiO thin film from p-type semiconductor to n-type semiconductor. No relation between 

Seebeck coefficient and electrical conductivity has observed after doping and the increase the electrical 

conductivity without affecting the Seebeck coefficient, has resulted inimproving the power factor. 
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