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Abstract 
This work reports the use ATR-FTIR Spectroscopy and multivariate calibration as a method for determination of 

oxidative stability of biodiesel and oils. The prediction of the oxidative stability showed a good agreement with the 

results obtained by the EN14112 reference method Rancimat. The models presented high correlation between spectral 

data and induction periods. The R2 values of (0.9927 and 0.9921) indicated the accuracy of the models to predict the 

oxidative stability of vegetable oils and samples of biodiesel, respectively. Student’s t test showed no significant 

difference at 95% confidence between the actual and the predicted values of the periods of induction when applied for 

samples of vegetable oils and biodiesel. 
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Introduction 
Biodiesel is considered an important alternative fuel to diesel since it has several advantages, such as minimizing the 

greenhouse effect, has lower emissions of particulate matter, is renewable, biodegradable, non-flammable and non-

toxic [1].  

 

Biodiesel is constituted by esters of long chain fatty acids obtained from renewable nature grease, such as vegetable 

oils or animal fats [1]. This biofuel newly produced is considered a relatively inert fuel. However, due its content of 

unsaturated fatty acid chains biodiesel has low oxidative stability and due to this its quality change with time 

principally when exposed to high temperatures [2, 3].  

 

When biodiesel is oxidized, it can negatively influence the performance of the fuel system due corrosive acids and 

deposits that may cause increased wear in engine fuel pumps and injectors [4]. The main factors that accelerate the 

oxidation process are elevated temperature, air, light, moisture, extraneous materials such as metals, peroxides, as well 

as the largest area of the surface between oil or biodiesel and air. The presence of natural or synthetic antioxidants 

retards oxidation [2,3].  

 

Thus, oxidative stability is an important quality parameter for oils and biodiesel [3]. ASTM D 6751 [5] and EN 

14214 [2] specify several analytical parameters that are related or are used for monitoring the oxidation state of oils, 

such as the Rancimat Induction Period, acid value, viscosity, iodine value, etc.  

 

Ultraviolet Spectrophotometry [6], Chromatographic Methods [7], Nuclear Magnetic Resonance [8],Vibrational 

Techniques [9-12] and Fluorescence Spectroscopy [3, 13-14]  have been used for monitoring the oxidation of oil or 

quantify individual oxidation products. 

  

Dantas et al., (2011) reported the use of UV/Vis absorption to evaluate the oxidative degradation of biodiesel, by 

means of the 232 and 272 nm absorption peaks, atributed to double bonds and carbonyl groups, respectively [6]. 

 

Ang and Young (1989) conducted experiments to determine the volatile compounds in cooked chicken meat using a 

static headspace gas chromatographic (GC) technique. Significant positive correlations were obtained between TBA 
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(thiobarbituric acid) numbers and the areas of 3 major peaks of the headspace profiles, indicating the applicability of 

the rapid headspace GC method for the determination of oxidative changes in chicken meat [7]. 

 

Wanasundara et al (1995) used NMR spectroscopy to monitor changes in the oxidation of the fatty acids of oils during 

storage. The increase of ratio of aliphatic to olefinic protons determined by NMR spectroscopy indicated progressive 

oxidation of unsaturated fatty acids [8]. 

 

Caravaca et al. (2013) used Fourier transform infrared spectroscopy associated with Partial Least Squares (FTIR–

PLS) for the evaluation of fly attack on olive oil quality [9]. Canha et al., (2012) reported the use of near infrared 

spectroscopy (NIRS), coupled with multivariable classification and calibration techniques, to determine the oxidative 

stability of biodiesel with and without antioxidants [10].  Vieira and Pasquine (2014) used Near Infrared Emission 

(NIRES) method based on the hydroperoxide emission at 2900 nm (3450 cm−1) for determining oxidative stability of 

biodiesel [11]. Lira et al. (2010) evaluated analytical methods based on near infrared (NIR) and middle infrared (MIR) 

spectroscopy and multivariate calibration to monitor the stability of biodiesel based on three parameters: oxidative 

stability index, acid number and water content. Partial least squares (PLS) and multiple linear regression (MLR) 

models showed that both near and middle infrared regions, and all variable selection methods tested were efficient for 

predicting these three important quality parameters of B100 [12]. Fluorescence spectroscopy has been used for 

monitoring deterioration of extra virgin olive oil [13, 14]. In previous work, we developed a method for the 

determination of oxidation stability of oils and biodiesel using a combination of spectrofluorimetry and multivariate 

calibration [3].   

 

In this work we evaluated the use of Attenuated Total Reflectance (ATR) in conjunction with Fourier transforms 

infrared spectroscopy (FTIR)  for determination of oxidation stability of vegetable oils and biodiesel through  PLS 

models correlating the ATR spectra with the corresponding values of the Induction Period (IP), previously determined 

by the Rancimat method (reference method). PLS models were developed using the region established by PCA (1600-

650 cm-1). Two calibration models were prepared using Partial Least Square (PLS) analysis, one PLS related spectra 

of vegetable oils with corresponding values of the IP and other related spectra of biodiesel with corresponding values 

of the IP. After the building of model, the oxidative stability was determined in approximately 10 minutes, including 

both the ATR and the PLS analyses.  

 

Materials and methods 
Samples 

 The data set consisted of twelve samples of vegetable oils acquired in the local market and eight biodiesel samples 

prepared in our laboratory by alkaline transesterification using methanol and vegetable oils. The samples without 

antioxidants were submitted to the Rancimat Test at 110ºC and air flow of 10 L h-1. 

 

Reference method: Oxidative stability determination 

The oxidative stability of the samples was measured by the Induction Period (IP) using a Metrohm 873 Biodiesel 

Rancimat®, according to EN14112.  

 

ATR-FTIR Spectroscopy 

The spectra were acquired using an Attenuated Total Reflectance (ATR) accessory to the Fourier Transform Infrared 

spectrometer (FTIR).  We used a PerkinElmer Spectrum 100 FT-IR. Each spectrum resulted from 16 scans, using a 

resolution of 4 cm-1. The wave number region of 4000-650 cm-1 was scanned.  The background spectrum was recorded 

with ambient air and subtracted from the sample spectrum.  

 

 Calibration and validation of PLS models 

Multivariate analyses were conducted by using Unscrambler X 10.0.1. Two types of calibration sets were employed, 

one containing only biodiesel and other containing vegetable oils. For each spectral matrix was built a PLS model 

using mean centered ATR-FTIR spectra as independent variables and, the measured of IP as dependent variables. The 

number of latent variables for PLS was determined using the default software based on the validation error. 

 

The method of cross-validation leave-one-out was used in this study. This method involves using a single observation 

from the data set as the validation data, and the remaining observations as the training data. This strategy is repeated 
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such that each observation in the data set is used once as the validation data. In each PLS model, blue points and 

curves represent calibration data and red points and curves represent validation data. 

 

Results and Discussion 
Only two Principal Components (PCs) were responsible for capturing 95% of the variance being 90% for the first and 

5% for the second PC (Figure 1).  A multivariate calibration model was developed by partial least squares regression 

(PLS) using the region of 4000-650 cm-1. The oxidative stability of vegetable oils was adequately reproduced by the 

ATR-FTIR spectral data. Figure 2 presents the graphic of the reference versus predicted oxidative stability values built 

for the samples of vegetable oils. The PLS model was built using as independent variables the ATR-FTIR spectral 

and as dependent variables the values of the actual periods of induction (Table 1). The coefficients of Correlation 

(0.9964) and R-square  (0.9928) of the PLS model presented near to 1 indicate the strength of the association of the 

observed data for the two variables and the efficiency of the model to carry out the predictions.   

 

The PLS model for samples of oils was validated using the method cross-validation leave-one-out and Student's t test 

was applied between the actual periods of induction of the vegetable oils, and those values predicted by PLS model.  

A t-calculated of -5.7. 10-6 (Table 1) was found. The t-tabled for 11 degrees of freedom is -2.201. Thus, it follows that 

the Student’s t test showed no significant difference at 95% confidence between the actual and the predicted values of 

the periods of induction of the vegetable oils. 

 

PCA built with ATR-FTIR spectral data of samples of biodiesel showed that only two principal component (or two 

PCs) were responsible for capturing  96% of the variance being 46% for the first and 50% for the second PC (Figures 

3).  

 

The oxidative stability of samples of biodiesel was adequately reproduced by the PLS model was built with the entire 

calibration set described in Table 5 with the exception of sample 8 considered anomalous by PCA. The model was 

proved useful to predict changes in oxidative stability of biodiesel based on the ATR-FTIR spectral variance. Figure 

4 present the graphics of the reference versus predicted oxidative stability values respectively built for the samples of 

biodiesel. The model was built using as independent variables ATR-FTIR spectral data in the wave number region of 

4000-650 cm-1 and the values of the periods of induction as dependent variables. The coefficients of Correlation 

(0.9960) and R-square  (0.9921) of the PLS model, near to 1, indicate the strength of the association of the observed 

data for the two variables and efficiency of the models for carry out the predictions.   

 

The PLS model for samples of biodiesel was validated using the method cross-validation leave-one-out and Student's 

t test was applied between the actual periods of induction of the samples of biodiesel, and those values predicted by 

PLS model.  A t-calculated of 0.27849 (Table 2) was found.  The t-tabled for 7 degrees of freedom is 2.365. Thus, 

it follows that the Student’s t test showed no significant difference at 95% confidence between the actual and the 

predicted values of the periods of induction of the samples of biodiesel. 
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Table 1. Student's t test applied for samples of vegetable oils 

Sample Vegetable oils Actual IP (h) Predicted IP( h) d (actual – 

predicted) 

1 Canola 8.76 8.295435 0.46457 

2 Sunflower 5.15 5.665429 -0.515429 

3 Corn 11.32 11.33087 -0.01087 

4 Olive 21.17 20.77151 0.39849 

5 Soy 11.95 12.08229 -0.13229 

6 Canola 3.64 4.665515 -1.025515 

7 Canola 5.67 5.174262 0.49574 

8 Corn 6.66 7.582051 -0.922051 

9 Corn 6.86 7.580342 -0.720342 

10 Soy 6.34 5.788849 0.55115 

11 Sunflower 4.23 2.891272 1.33873 

12 Girassol 1.63 1.552161 0.07784 

              dm =1.2. 10-6 ; s =  0.702361; Sm =  0.202754; tcal =  -5.75409.10-6; ttab= -2.201 

             Where d= difference between each pair, dm = mean of differences, 

              s = standard deviation, sm=standard error of the differences, tcal =dm/sm 

 

Table 2. In Student's t test applied for samples of biodiesel 

Sample Biodiesel Actual IP (h) Predict IP (h) d (actual – predicted) 
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          dm =0.02 ; s =  0.19; Sm =  0.071815; tcal = 0.27849 ; ttab= 2.365 

          Where d= difference between each pair, dm = mean of differences, 

           s = standard deviation, sm=standard error of the differences, tcal =dm/sm 

 

Figure Captions 
 

Figure 1. Scores of PC1xPC2 for ATR-FTIR spectra of vegetable oils 

 
Figure 1 

 

Figure 2. Reference versus predicted oxidative stability values for the samples of vegetable oils. 

1 Sunflower 0.9 0.96 -0.06 

2 Sunflower 1.0 1.04 -0.04 

3 Corn 3.56 3.14 0.42 

4 Corn 3.14 3.2 -0.06 

5 Canola 3.96 3.93 0.03 

6 Canola 3.89 4.07 -0.18 

7 Soy 4.68 4.65 0.03 

8 Soy 4.54 -----  
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Figure 2 

 

 

Figure 3. Scores of PC1xPC2 for ATR-FTIR spectra of samples of biodiesel 

 
Figure 3 

 

 

Figure 4. Reference versus predicted oxidative stability values for the samples of biodiesel. 
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Figure 4 
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