
[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
62

Global Journal of Advanced Engineering Technologies and Sciences
COMPARATIVE ANALYSIS OF THE GREEDY METHOD AND

DYNAMIC PROGRAMMING IN SOLVING THE KNAPSACK PROBLEM
Oluyinka I. Omotosho*1, Aderemi E. Okeyinka2

*1Department of Computer Science and Engineering, Ladoke Akintola University of Technology,

PMB 4000, Ogbomosho, Oyo state, Nigeria.
2School of Physical Sciences, Landmark University, Omu-aran, Kwara state, Nigeria.

Abstract
In this work, two of the existing algorithms for solving the Knapsack are investigated and implemented using the same

programming language. The complexity of the programs and hence the algorithms were measured to determine the

more efficient of the two algorithm. The result of this comparative study of complexity is that Greedy algorithm is

more efficient for solving knapsack problem than dynamic programming approach.

Keywords: Greedy algorithm, Dynamic Programming, Comlexity, Knapsack model.

Introduction
The success of a practical management of any organisation, including the conduct and co-ordination of the operations

or activities within the organisation, be it business, industries, governmental agencies hospital and so forth, highly

depends on the ability to provide, understandable conclusions to the decision maker(s), when they are needed. Rather

than being content with merely improving the status quo, the goal is to identify the best or optimal solution to the

problem under consideration [1]. The real life applications, such as assignment of personnel, blending of materials,

distribution and transportation of goods/sales effort, production planning, budget allocation and so forth are highly

characterised by the need to allocate limited resources among various items involved [2].This is a special resource

allocation problem that is concerned with the task of filling the knapsack (a container) from the possible maximum

selected weight say Wj that maximizes the total profit that can be earned from the selected weights to fill the knapsack

almost exactly. This implies that at most the accumulated weight must not exceed M, knapsack capacity. Any class of

problems in network optimisation, be it transportation, communication, production planning and so forth, with a

resemblance of the above is a knapsack problem [3].Two versions of the knapsack problem are 0-1 and fractional

knapsack problem [10]. This paper employs the Greedy Method, [4] and Dynamic Programming method, [5]. Both

techniques are solution strategies for solving the knapsack and the related problems. This paper analyses and compares

the performance of the various algorithms based on these two techniques for solving the knapsack problem, from the

points of view of program complexity, optimal values and values of the constraint functions.

Related Works
A greedy algorithm for optimization problem always make the choice that looks best at the moment and adds is it to

best solution[9]. Greedy algorithms don’t always yield optimal solutions but, when they do, they are usually the

simplest and most efficient algorithm [9]. Most of the problems solvable by the Greedy method have n inputs and

requires one to obtain a subset that satisfies some constraints [1]. The dynamic programming method can be used

when the solution to a problem may be viewed as a result of sequence of decisions [5].

It is used when the solution can be recursively described in terms of solutions to subproblems [10] Dynamic

programming algorithms finds solution to subproblems and stores them in memory for later use [10]. Horozitz and

Sahni [6] extended the dynamic programming approach to include a divide and conquer scheme and showed that the

problem can be solved in time 0(2n/2). Denardo [8] considered the 0/1 knapsack problem as a special case of resource

allocation problem. He proposed a dynamic programming solution and showed that since the knapsack model requires

only one state variable the formulation is simpler and faster than the general resource allocation problem. Denardo

and Fox [7] also applied the Reaching technique, which is a technique for computing solutions to the longest-route

and shortest-route problems in cyclic network, to the knapsack problem. They showed that the knapsack model has

enough special structure to allow reaching to be accelerated in ways that accord it an advantage over any other

recursive method [7]. There are a number of important reasons for analysing algorithms. In their study Horowitz and

Sahni [6] point out that algorithms are analysed in order to possibly predict the future and give the chance of being

efficient experts by enabling one to exhibit his skills by devising new means of doing the same task even faster. This

http://www.gjaets.com/

[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
63

tendency has a large payoff in computing where time means money and efficiency saves dollars [6]. For any algorithm

the choice of test input depends on the complexity of the program though with some other factors [8]. This paper work

is a comparative study of two optimization techniques, Dynamic Programming and Greedy method, of solving the

knapsack problem.

METHODS
This methods considered in this paper are Greedy Method and Dynamic programming method, as solution strategies

in solving the knapsack problem. Each are explained in subsequent sections.

The greedy method

The greedy method works in stages, considering one input at a time. At each stage, a decision is made whether the

inclusion of a particular input will result in an optimal solution. This is done by considering the inputs in an order that

is determined by some selection procedure. If the inclusion of the next input into a partially constructed optimal

solution will result in an infeasible solution , then this input is discarded. The input selection procedure itself is based

on some optimisation measure. This measure may or may not be the objective function. Therefore Greedy method

provides a set of feasible solutions from which the optimal solution is selected.

Objective function: the quantity to be optimized i.e. maximizes or minimizes as the case may be.

Feasible Solution: a subset of inputs that satisfy the given constraints around the objective function that is, solution

within the feasible region.

Optimal Solution: a feasible solution that either maximizes or minimizes the objective function.

Given a knapsack problem formally stated as :

∑ 𝑃𝑖𝑋𝑖

1≤𝑖≤𝑛

∑ 𝑊𝑖𝑋𝑖

1≤𝑖≤𝑛

 and 0 < Xi < 1, Pi > 0, Wi > 0, 1 < i < n, (3)

A feasible solution or filling is any set (Xi, X2,.........Xn), satisfying equations (2) and (3), while an optimal solution

is a feasible solution for which (1) is maximum.

A greedy algorithm suggests that at each step we include that object which has a maximum profit per unit of capacity

used. When applying the greedy method to the solution of the knapsack problem there are at least three different

measures one can attempt to optimise, when determining which object to include next [9]. These are the total profit

or largest profit, the capacity used and the ratio of accumulated profit divided by the capacity used. If profit is used as

the measure, then at each step we will choose an object an object that increases the profit most.

If the capacity measure is used , the next object included will increase this at least . Greedy based algorithms using

the first two measures do not guarantee optimal solutions for the knapsack problem. Horowitz and sahni [7] have

showm that a greedy algorithm using the third strategy always obtains an optimal solution . Therefore the object will

be considered for inclusion in order of the ratio Pi/wi. The algorithms assume that the objects are sorted into non

increasing order Pi/Wi. Algorithm for solving the knapsack problem is given in Algorithm 1.

Procedure Greedy-Knapsack (P, W, M, X, n)

(* P(l: n) and W(l:n) contain the profits and weights, respectively, of the n objects ordered so that P(i) P(i) > P(i +1)

P(i +1) . M is the Knapsack size and X (1: n) is the solution vector *) real P(1 :n), W (1: n), X(l :n), M, Cu;

integer i, n;

x <------- 0 (* initialise Solution to zero *)

≤ M (2)

 (1) Maximize

Subject to

http://www.gjaets.com/

[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
64

Cu — M (* Cu = Remaining Knapsack capacity *)

For 1 <------ 1 to n do

If W(i) > Cu then exit end if

 X(i) <------ 1

 Cu <------ Cu – W

 end for

If I ≤ n then X(i) <------ Cu/W(i) end if

End greedy – Knapsack

Algorithm 1: Greedy Algorithm for the Knapsack problem

Weaknesses of Greedy Method

1. It does not give an overall optimal solution; it only gives an optimal solution for a particular unit at a point

in time. This implies it only solves a problem statically.

2. The solution area of the Greedy strategy to the Knapsack problem is limited. In other words it cannot be

applied to a large number of realistic cases.

Dynamic Programming method

Dynamic programming deals basically with optimization of multistage decision processes, where decisions are made

sequentially at many points in time. It provides a method of avoiding the enumeration of all decision sequences in

order to pick out the best [7]. It drastically reduces the amount of enumeration by avoiding the enumeration of some

decision sequence that cannot possibly be optimal, i.e. Dynamic programming takes care of non-linarites,

discontinuities, and local maximal or minimal to which linear programming cannot be successfully applied. In

dynamic Programming, an optimal sequence of decisions is arrived at by making explicit appeal to the principle of

optimality [8]. An optimal policy has the property that whatever the initial state and initial decisions, the remaining

decisions must constitute an optimal policy with regard to the state resulting from the first decision ".

A Solution to the 0/1 knapsack problem is obtainable by making a sequence of decisions on the variables X1, X2

,.......Xn. A decision on variable X; involves deciding which of the values 0 or 1 is to be assigned to it. In this case, the

sequential process breaks the problems involving several variables into a sequence of simpler problems each involving

several variables into sequence of simpler problems each prior decision not affected by subsequent decisions. Each

component problem can then be solved by the available procedure, usually the enumeration rechnique.

The essential characteristic of dynamic programming is a series of decisions distributed in time, where there is a

interrelationship between decisions. Due to this interrelationship current decisions cannot be made independent of

future decisions.

A return function which evaluates the choice made at each decision in terms of the contribution the decision can make

to the overall objective (Minimized or maximized) is associated with each decision at every stage The total decision

process at each stage is related to its adjoining stages by a quantitative, relationship called the transition function,

which can reflect discrete or continuous quantities depending on the problem.

Dynnamic Progrmming Model Formulation

http://www.gjaets.com/

[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
65

(a) For a single stage model

Fig 1: Single Stage Model

Where : Sn = input state

n = stage number

Xn = Decision

Sn = Output state

gn = Return function = rn(Sn, Xn)

 (b) For a multi stage model

Each stage of a multistage dynamic programming has these features ;

Initial state : Sn describes the state at the start of stage n

Decision : Xn, the decision variable of the stage

Return function : rn (Sm Xn) the return from stage N the initial was Sn and the decision was Xn

State transformation : Sn-1 tn(Sn,Xn) A function that says what the state of the process will be at the start of

the stage (stage n -1) as a function of Sn, Xn, tn = function.

The total return or value of the process is the sum of the stage returns in many problems. Dynamic programming

equations therefore, relates total optimal return with n stages to go. i.e, Fn(Sn) to the stage n return plus the value of

the remaining n - 1 stages [8]

Fn(Sn) = Opt { rn (Sn, Xn) + Fn_! (Sn-l)}

Subject to SN -i = tn(Sn ,Xn) = Sn - Xn

Therefore Dynamic programming is characterized by;

 INPUT

 Figure 2:

Figure 2: Multi stage model

http://www.gjaets.com/

[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
66

i. Stages: Point of decision making

ii. States : input parameters

iii. Transformation : Equation or rule governing the decision

iv. Decision

The Algorithm 2 gives the solution to the problem using this strategy [10]

Procedure Dynamic(P,W, stage, iternno,)

(* P(l, n) and W(1: n) contain profit and weights respectively of the n objects without any specific order *)

realP(l: n), W(l:n), x(l:n), stage,S(l:n, l:m)

integer i, n, a, b, c, d

for i <----- 1 to n do

for stage <------1 to stage<-itemno

 xi ------- 0

 for i ---- 1 to n

 if xi <----- 0

 c[stage]+I ----- 0

 else

 c[stage]+1  b[stage]*xi;

 else

 if xi  0

 for I  I to n

 a[stage]+I  (b[stage-l]+I

 xi  1

 st  w * x;

for 1  1 to n

 if a[stage + I > b[stage] +1

 cfstage] + I  a[stage] +1;

 d[stage] +1  0

 else

 c[stage] +1  b[stage] +1;

 d[stage] +1  1

 endif

 endfor

 endfor

 endfor

 w  a[I] * c[I]

 tw  tw + w

 p  b[i]* c[i]

 tp  tp + p;

endif

 endif

 endif

 endfor

Algorithm 2: Dynamic Programming Algorithm for the Knapsack problem

Benefits of Dynamic Programming method

1. Produces an optimal solution to realistic knapsack problems" with a very wide. Solution area contrary to the

Greedy strategy.

2. It does have a long term solution.

Limitations of Dynamic Programming method
1. The Curse of dimensionality. This is the major weakness of dynamic programming imposed by drastic increase

in the amount of work and storage required in terms of the information to be computed and stored to reach an

optimal solution.

http://www.gjaets.com/

[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
67

2. Every dynamic programming is distinct, there is no fixed rule or procedure to flow in formulating problem i.e.

particular equations used must be developed to fit each individual situation.

1. Dynamic Programming is effective for problems with multistage sequential decisions, hence could not be

applied to single stage problems where decisions are made at one point in time.

Comparative Measure For Both Technques
In this work, three criteria are considered to analyses the two techniques. These are;

i. Program Complexity measure

ii. Objective function optimal values (£ PiXj)

iii. Constraint function values

Program Complexity measure
The most formidable measure for comparing two algorithms still remains the complexity computation in computer

science. In this work, the Halstead complexity metrics are used to measure the program complexity of both techniques

based on their program segment (procedure)

4.1.1 Demonstration of Halstead complexity metric with the Greedy solution program Segment;

Void Greedy()

 {

Cu=mk;

For(i= l; I <=; ++1)

{if (w[i] > Cu)

 {

 if((cu > 0) && (i <= n))

 x[i] = cu/w[i]

 else

 x[i] = 0;

 }

 else

x[i] = l;

Cu = Cu – w[i];

SumP+ = X[i] * P[i];

SumW+ = X[i] * W[i];

 }

}

From the above, the program volume of the Greedy solution segment is given by;

 V(F) = N log n, where N = 76

 n = 33

 V(F) = 76 log 33

 = 115.41

n N

2 2

1 1

4 4

7 12

4 5

- 1

5 12

2 6

1 1

- 4

1 1

1 1

- 4

1 6

3 7

1 7

- 1

- 1

33 76

http://www.gjaets.com/

[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
68

Demonstration of Halstead complexity metric with the Dynamic Programming solution program Segment
Void Dynamic()

{

for(i=l;i,=n;++l)

{

for(stage=1; stage<=itemno ;++stage)

xi=0

for(i=stage;i<=n;++1)

{

if (stage==l)

 {

if(xi==0){

*(c[stage]+i =0; }

else *(c[stage]+i=b[stage]*xi;

}

else{

if(xi=0)

{

for(i=0;<=n;++i)

{

 *(a[stage]+I = *(b[stage-l]+I);

 }

xi = 1 ;

st = w * x;

for(i=0;K=n;++l)

{

if (*(a[stage + 1) > *(b[stage] + 1))

{

cfstage] + i=a[stage] + 1;

d[stage] + i=0

else

{

c[stage] + i=(b[stage] + 1;

d[stage] + i=l;

}

}

w = a[I] * c[I];

tw = tw + w;

p = b[i]*c[i];

tp = tp + p;

}

Hence, the program volume of the Greedy solution Program segment is given by;

V(F) = N log n , where N = 194

 n= 37

V(F) = 1941og37

 = 304.29

n N

2 2

1 1

7 12

3 3

3 12

- 1

5 12

- 11

- 1

- 5

1 1

- 6

1 4

3 9

1 1

- 2

- 5

- 1

 12

- 1

1 9

- 1

- 4

2 6

- 12

- 1

- 11

- 1

- 8

- 1

- 1

- 7

- 6

- 1

- 1

2 6

2 6

2 6

1 6

- 1

37 194

http://www.gjaets.com/

[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
69

Objective Function Optimal values and Constraint Function values

As part of the criteria to measure and compare the performance of the two design techniques as they are applied to the

knapsack problem, the algorithms 1 and 2 are not only used to compute the programs complexity, but also to measure

and compute the optimal value of the objective function and the value of the Constraint function.

Simulation Description

Nine randomly generated data sets, ranging from 10 to 175, were used for each program. The data set were chosen to

be 10, 20, 30, 40, 75, 100,125, 150 and 175. For Set n, similar problem instances were randomly generated using a

random number generator. Each data set satisfies the following; random Wi and Pi, Wi Z [1,100],

 Pi S [1,100], M =

∑𝑊𝑖/2

𝑛

1

The following formulars are used to generate the profits and weights, respectively.

Profit = trunk [100 x RAN + C]

Weight = trunk [100 x RAN + C], Where C is any constant and RAN is the Random number generating

function.

The computation of the optimal value of the objective function, that is, the maximum profit, £PiXi, the value of the

constant function, that is, the maximum capacity of knapsack filled, ZWiXi, and the solution vector (Decision variable)

are as described in section three.

Result Analysis And Discussion
Programming Complexity measure
From the result of the program complexity computation, based on the Halstead metric in sections 4.1.1 and 4.1.2.

respectively as shown in Table 2, it could be observed that the Greedy program version has a volume of 115.41 while

dynamic programming version has a volume of 304.29. This implies that Dynamic Programming version is more

complex and voluminous than does Greedy method.

Optimal value Computation
From the results or outputs of the program execution; as shown in table 2, it could be observed that by using the greedy

method, the knapsack is being always filled to it's full capacity, since the value of the constant function ∑𝑊𝑖𝑋𝑖is

always equal to the knapsack capacity, for all the data sets. However, this method gives the minimum profit, as the

optimal value of the objective function ∑𝑃𝑖𝑋𝑖 is the lower for all the data sets . Figures 1 land 2 show these results ,

graphically.

The dynamic programming technique gives a better value of the objective function than the greedy method. It increases

the optimal value of the objective function by an average of 6.27% of the greedy method. For n =1, the constraint

function value is 99% of the knapsack capacity, 98% for n=125, 95% for n=150 and 96% for n=175, giving an average

of 96%. Therefore the dynamic programming technique will on the average, fill 96% of the knapsack with a profit of

6.27% better than the greedy method. From the results the conclusion is that, based on the optimal value for the

objective function, the dynamic programming technique is better than the greedy method for the solution to the 0/1

knapsack problem.

The results are clearly shown in the graphical representation of Figs 1 and 2. The averages, which are reported in this

section, are computed directly from the tables. The percentage for the constant function values is computed by dividing

the constant function by the capacity of the knapsack, and multiplying the result by 100, while the average is computed

by dividing the sum of percentages by the number of groups of the sets, 9.

The performance of one method, x, over the, y, is computed by using the formula

[(x-y)/y]*100%, where x is the value reported for one method and y is that reported for the other method. The average

performance is then computed as mention earlier.

http://www.gjaets.com/

[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
70

Table 1: Performance Measures unit

DATA SET,

 N
TECHNIQUE

OPTIMAL VALUE OF

OBJECTIVE

FUNCTION

∑𝑃𝑖𝑋𝑖

KNAPSACK

CAPACITY

M

CONTRAINT

FUNCTION

VALUE

∑𝑊𝑖𝑋𝑖

10
Greedy Method

Dynamic Programming

400.03

420.00

350

350

350

345

20
Greedy Method

Dynamic Programming

990.03

1065.00

732

732

732

720

30
Greedy Method

Dynamic Programming

1550.50

1705.00

839

839

839

814

40
Greedy Method

Dynamic Programming

1967.67

2025.00

1040

1040

1040

1040

75
Greedy Method

Dynamic Programming

2025.00

2129.00

1145

1145

1145

1100

100
Greedy Method

Dynamic Programming

2203.10

2333.00

1390

1390

1390

1270

125
Greedy Method

Dynamic Programming

2500.03

2693.00

1768

1768

1768

1990

150
Greedy Method

Dynamic Programming

2705.00

2973.00

2004

2004

2004

1900

175
Greedy Method

Dynamic Programming

3000.40

3077.00

2308

2308

2308

2206

Table 2: Summary of Performance Measures

ANALYSIS CRITERIA GREEDY METHOD DYNAMIC PROGRAMMING

Average optimal value of Objective

Function
2nd 1st

Average Constraint Function value 100% 96%

Program Complexity 155.41 304.29

Figure 1: Objctive function optimal values analysis

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9

O
b

je
ct

iv
e

fu
n

ct
io

n
O

p
ti

m
al

 v
al

u
es

Number of Data set (n)

Opmal values of the obj. fnc vs Number
of Data sets

Dynamic

Greedy

http://www.gjaets.com/

[Omotosho, 2(8): August, 2015] ISSN 2349-0292
 Impact Factor 2.365

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
71

Figure 2: Constraint function optimal values analysis

Conclusion
This paper has been able to analyse and compare two basic techniques; Greedy method and Dynamic programming,

for solving the knapsack problem. Their performances are measured against the program complexity, optimal value

of the objective function and value of the constraint function. Dynamic Programming has been considered to be

effective and efficient than the Greedy method since it yields better optimal value of the objective function than does

the Greedy. Also, dynamic programming yields an overall optimal solution over long period of time unlike the greedy

method which only gives the optimal solution for particular stage or period. Though the Greedy method program is

less complex to write, has less program volume and simpler to construct, than the Dynamic Programming, it is not as

applicable for practical purposes as does dynamic programming.

References

1. Wagner, H.M., (1989) "Principles of Operations Research, with Managerial Decisions", 2nd Edition, prentice

Hall, Inc. Cliffs, N.J.

2. Frederick, S. Hillier, and Gerald J. Lieberman, (1967,1975) "Operation Research". Second Edition, Holden-

Day, Inc.

3. Ingariola, G., and Korsh, J., "A general algorithm for one dimensional knapsack problems", Operation

Research, 25(5), Ingargiola, G., and Korsh, J., (1973) "A reduction algorithm for zero-one single knapsack

problems", Management Science, 20(4), pp.460-663.

4. Magazine, m., Nemhauser, G., and Trotter, L., (1975) "When the Greedy solution solves aclass of knapsack

problems", operation Research, 23(2).

5. Nemhauser, G., and Ullman, Z., (1969) "Discrete dynamic programming and capital allocation", management

science, 15(9).

6. Horowitz, E., and Sahni, S., (1974) "Computing partitions with applications to the knapsack problem",

J.ACM, 21(2), pp.277-292.

7. Denardo, E.V, and Fox B.L, (1980) "Enforcing constraints on Expanded Networks".

8. Denardo, E.V, (1982) "Dynamic Programming, models and Application Prentice-Hall, Inc. Englewood cliffs,

New Jersey 07632, 2015.

9. CLRS SECTION 16. Lecture 14: Greedy Algorithms, http://www.cse.ust.<k>-dekai.notes.

10. Goddard S. Dynamic programming 0-1 Knapsack problem. http://www.cse.uni.edu/-

goddard/Courses/CSCE310J, 20015.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9

C
o

n
st

ra
in

t
fu

n
ct

io
n

 v
al

u
es

Number of Data set(n)

Constraint function values vs
Number of Data sets

Dynamic

Greedy

http://www.gjaets.com/
http://www.cse.uni.edu/-goddard/Courses/CSCE310J
http://www.cse.uni.edu/-goddard/Courses/CSCE310J

