
[Omotosho, 2(8): August, 2015]  ISSN 2349-0292 
  Impact Factor 2.365      

http://www.gjaets.com               © Global Journal of Advance Engineering Technology and Sciences  
62 

 

Global Journal of Advanced Engineering Technologies and Sciences 
COMPARATIVE ANALYSIS OF THE GREEDY METHOD AND 

DYNAMIC PROGRAMMING IN SOLVING THE KNAPSACK PROBLEM  
Oluyinka I. Omotosho*1, Aderemi E. Okeyinka2 

*1Department of Computer Science and Engineering, Ladoke Akintola University of Technology,  

PMB 4000, Ogbomosho, Oyo state, Nigeria. 
2School of Physical Sciences, Landmark University, Omu-aran, Kwara state, Nigeria. 

 

Abstract 
In this work, two of the existing algorithms for solving the Knapsack are investigated and implemented using the same 

programming language. The complexity of the programs and hence the algorithms were measured to determine the 

more efficient of the two algorithm. The result of this comparative study of complexity is that Greedy algorithm is 

more efficient for solving knapsack problem than dynamic programming approach. 

  

Keywords: Greedy algorithm, Dynamic Programming, Comlexity, Knapsack model. 

 

Introduction 
The success of a practical management of any organisation, including the conduct and co-ordination of the operations 

or activities within the organisation, be it business, industries, governmental agencies hospital and so forth, highly 

depends on the ability to provide, understandable conclusions to the decision maker(s), when they are needed. Rather 

than being content with merely improving the status quo, the goal is to identify the best or optimal solution to the 

problem under consideration [1]. The real life applications, such as assignment of personnel, blending of materials, 

distribution and transportation of goods/sales effort, production planning, budget allocation and so forth are highly 

characterised by the need to allocate limited resources among various items involved [2].This is a special resource 

allocation problem that is concerned with the task of filling the knapsack (a container) from the possible maximum 

selected weight say Wj that maximizes the total profit that can be earned from the selected weights to fill the knapsack 

almost exactly. This implies that at most the accumulated weight must not exceed M, knapsack capacity. Any class of 

problems in network optimisation, be it transportation, communication, production planning and so forth, with a 

resemblance of the above is a knapsack problem [3].Two versions of the knapsack problem are 0-1 and fractional 

knapsack problem [10]. This paper employs the Greedy Method, [4] and Dynamic Programming method, [5]. Both 

techniques are solution strategies for solving the knapsack and the related problems. This paper analyses and compares 

the performance of the various algorithms based on these two techniques for solving the knapsack problem, from the 

points of view of program complexity, optimal values and values of the constraint functions. 

 

Related Works 
A greedy algorithm for optimization problem always make the choice that looks best at the moment and adds is it to 

best solution[9]. Greedy algorithms don’t always yield optimal solutions but, when they do, they are usually the 

simplest and most efficient algorithm [9]. Most of the problems solvable by the Greedy method have n inputs and 

requires one to obtain a subset that satisfies some constraints [1]. The dynamic programming method can be used 

when the solution to a problem may be viewed as a result of sequence of decisions [5].  

 

It is used when the solution can be recursively described in terms of solutions to subproblems [10] Dynamic 

programming algorithms finds solution to subproblems and stores them in memory for later use [10]. Horozitz and 

Sahni [6] extended the dynamic programming approach to include a divide and conquer scheme and showed that the 

problem can be solved in time 0(2n/2). Denardo [8] considered the 0/1 knapsack problem as a special case of resource 

allocation problem. He proposed a dynamic programming solution and showed that since the knapsack model requires 

only one state variable the formulation is simpler and faster than the general resource allocation problem. Denardo 

and Fox [7] also applied the Reaching technique, which is a technique for computing solutions to the longest-route 

and shortest-route problems in cyclic network, to the knapsack problem. They showed that the knapsack model has 

enough special structure to allow reaching to be accelerated in ways that accord it an advantage over any other 

recursive method [7]. There are a number of important reasons for analysing algorithms. In their study Horowitz and 

Sahni [6] point out that algorithms are analysed in order to possibly predict the future and give the chance of being 

efficient experts by enabling one to exhibit his skills by devising new means of doing the same task even faster. This 
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tendency has a large payoff in computing where time means money and efficiency saves dollars [6]. For any algorithm 

the choice of test input depends on the complexity of the program though with some other factors [8]. This paper work 

is a comparative study of two optimization techniques, Dynamic Programming and Greedy method, of solving the 

knapsack problem. 

 

METHODS 
This methods considered in this paper are Greedy Method and Dynamic programming method, as solution strategies 

in solving the knapsack problem. Each are explained in subsequent sections. 

 

The greedy method 

The greedy method works in stages, considering one input at a time. At each stage, a decision is made whether the 

inclusion of a particular input will result in an optimal solution. This is done by considering the inputs in an order that 

is determined by some selection procedure. If the inclusion of the next input into a partially constructed optimal 

solution will result in an infeasible solution , then this input is discarded. The input selection procedure itself is based 

on some optimisation measure. This measure may or may not be the objective function. Therefore Greedy method 

provides a set of feasible solutions from which the optimal solution is selected. 

 

Objective function: the quantity to be optimized i.e. maximizes or minimizes as the case may be. 

 

Feasible Solution: a subset of inputs that satisfy the given constraints around the objective function that is, solution 

within the feasible region.  

 

Optimal Solution: a feasible solution that either maximizes or minimizes the objective function. 

Given a knapsack problem formally stated as : 

   

∑ 𝑃𝑖𝑋𝑖

1≤𝑖≤𝑛

 

 

                               

∑ 𝑊𝑖𝑋𝑖

1≤𝑖≤𝑛

 

 

       and    0 < Xi < 1, Pi >  0, Wi > 0,   1 < i < n,               (3) 

 

A feasible solution or filling is any set (Xi, X2,.........Xn ), satisfying equations (2) and (3), while an optimal solution 

is a feasible solution for which (1) is maximum. 

 

A greedy algorithm suggests that at each step we include that object which has a maximum profit per unit of capacity 

used. When applying the greedy method to the solution of the knapsack problem there are at least three different 

measures one can attempt to optimise, when determining which object to include next [9]. These are the total profit 

or largest profit, the capacity used and the ratio of accumulated profit divided by the capacity used. If profit is used as 

the measure, then at each step we will choose an object an object that increases the profit most. 

If the capacity measure is used , the next object included will increase this at least . Greedy based algorithms using 

the first two measures do not guarantee optimal solutions for the knapsack problem. Horowitz and sahni [7] have 

showm that a greedy algorithm using the third strategy always obtains an optimal solution . Therefore the object will 

be considered for inclusion in order of the ratio Pi/wi. The algorithms assume that the objects are sorted into non 

increasing order Pi/Wi. Algorithm for solving the knapsack problem is given in Algorithm 1.   

 

Procedure Greedy-Knapsack (P, W, M, X, n) 

(* P(l: n) and W( l:n)   contain the profits and weights, respectively, of the n objects ordered so that P(i) P(i) > P(i +1) 

P(i +1) . M is the Knapsack size and X (1: n) is the solution vector *) real P( 1 :n), W (1: n), X(l :n), M, Cu; 

 

integer i, n;  

x   <-------    0         (* initialise Solution to zero *) 

≤  M  (2) 

    (1) Maximize 

 

  

Subject to
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Cu             —    M        (* Cu = Remaining Knapsack capacity *) 

For 1  <------     1  to n do 

If W(i) > Cu then exit end if 

   X(i) <------   1 

   Cu   <------  Cu – W    

   end for 

If I ≤  n then X(i) <------  Cu/W(i) end if 

End greedy – Knapsack 

 

Algorithm 1: Greedy Algorithm for the Knapsack problem 

Weaknesses of Greedy Method 

1. It does not give an overall optimal solution; it only gives an optimal solution for a particular unit at a point 

in time. This implies it only solves a problem statically. 

2. The solution area of the Greedy strategy to the Knapsack problem is limited. In other words it cannot be 

applied to a large number of realistic cases. 

 

Dynamic Programming method 

Dynamic programming deals basically with optimization of multistage decision processes, where decisions are made 

sequentially at many points in time. It provides a method of avoiding the enumeration of all decision sequences in 

order to pick out the best [7]. It drastically reduces the amount of enumeration by avoiding the enumeration of some 

decision sequence that cannot possibly be optimal, i.e. Dynamic programming takes care of non-linarites, 

discontinuities, and local maximal or minimal to which linear programming cannot be successfully applied. In 

dynamic Programming, an optimal sequence of decisions is arrived at by making explicit appeal to the principle of 

optimality [8]. An optimal policy has the property that whatever the initial state and initial decisions, the remaining 

decisions must constitute an optimal policy with regard to the state resulting from the first decision ". 

 

A Solution to the 0/1 knapsack problem is obtainable by making a sequence of decisions on the variables X1, X2 

,.......Xn. A decision on variable X; involves deciding which of the values 0 or 1 is to be assigned to it. In this case, the 

sequential process breaks the problems involving several variables into a sequence of simpler problems each involving  

several variables into sequence of simpler problems each prior decision not affected by subsequent decisions. Each 

component problem can then be solved by the available procedure, usually the enumeration rechnique. 

 

The essential characteristic of dynamic programming is a series of decisions distributed in time, where there is a 

interrelationship between decisions. Due to this interrelationship current decisions cannot be made independent of 

future decisions. 

 

A return function which evaluates the choice made at each decision in terms of the contribution the decision can make 

to the overall objective (Minimized or maximized) is associated with each decision at every stage The total decision 

process at each stage is related to its adjoining stages by a quantitative, relationship called the transition function, 

which can reflect discrete or continuous quantities depending on the problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynnamic Progrmming Model Formulation 
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(a) For a single stage model 

 
Fig 1: Single Stage Model 

 

Where :          Sn = input state 

n = stage number  

Xn = Decision  

Sn = Output state  

gn   = Return function = rn( Sn, Xn) 

 

 (b)     For a multi stage model 

Each stage of a multistage dynamic programming has these features ;  

Initial state :         Sn describes the state at the start of stage n 

Decision :             Xn, the decision variable of the stage 

Return function :      rn (Sm Xn) the return from stage N the initial was Sn and the decision was Xn 

State transformation : Sn-1 tn(Sn,Xn) A function that says what the state of the process will be at the start of 

the stage (stage n -1) as a function of Sn, Xn, tn = function. 

The total return or value of the process is the sum of the stage returns in many problems. Dynamic programming 

equations therefore, relates total optimal return with n stages to go. i.e, Fn(Sn) to the stage n return plus the value of 

the remaining n - 1 stages [8] 

Fn(Sn) = Opt { rn (Sn, Xn)   + Fn_! (Sn-l)} 

Subject to       SN -i = tn( Sn ,Xn) = Sn - Xn 

 
Therefore Dynamic programming is characterized by; 

 

 

 

      INPUT 

 

 

 

 

   Figure 2: 

 

 

 

 

Figure 2: Multi stage model 
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i. Stages: Point of decision making  

ii. States : input parameters 

iii. Transformation : Equation or rule governing the decision  

iv. Decision 

The Algorithm 2 gives the solution to the problem using this strategy [10]  

 

Procedure Dynamic(P,W, stage, iternno,) 

(* P(l, n) and W( 1: n) contain profit and weights respectively of the n objects without any specific order *) 

realP(l: n), W(l:n), x(l:n), stage,S(l:n, l:m) 

integer  i, n, a, b, c, d 

for i  <-----    1 to n do 

for stage <------1 to stage<-itemno 

   xi ------- 0 

   for i  ---- 1 to n 

        if xi  <----- 0     

            c[stage]+I  ----- 0 

       else 

           c[ stage]+1    b[stage]*xi; 

       else 

       if  xi    0 

           for I    I to n 

             a[stage]+I    (b[stage-l]+I 

   xi   1 

  st      w * x; 

for 1   1 to n 

     if a[stage + I > b[stage] +1 

         cfstage] + I     a[stage] +1; 

         d[stage] +1     0 

                            else 

                     c[stage] +1    b[stage] +1; 

         d[stage] +1     1 

                          endif 

                      endfor 

               endfor 

 endfor  

   w    a[I] * c[I] 

  tw   tw + w 

  p     b[i]* c[i] 

  tp    tp + p; 

endif  

         endif 

      endif 

 endfor 

 

Algorithm 2: Dynamic Programming  Algorithm for the Knapsack problem 

Benefits of Dynamic Programming method 

1. Produces an optimal solution to realistic knapsack problems" with a very wide. Solution area contrary to the 

Greedy strategy. 

2. It does have a long term solution. 

 

Limitations of Dynamic Programming method 
1. The Curse of dimensionality. This is the major weakness of dynamic programming imposed by drastic increase 

in the amount of work and storage required in terms of the information to be computed and stored to reach an 

optimal solution.  
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2. Every dynamic programming is distinct, there is no fixed rule or procedure to flow in formulating problem i.e. 

particular equations used must be developed to fit each individual situation.  

1. Dynamic Programming is effective for problems with multistage sequential decisions, hence could not be 

applied to single stage problems where decisions are made at one point in time. 

 

Comparative Measure For Both Technques 
In this work, three criteria are considered to analyses the two techniques. These are; 

i. Program Complexity measure 

ii. Objective function optimal values     (£ PiXj) 

iii. Constraint function values 

 

Program Complexity measure 
The most formidable measure for comparing two algorithms still remains the complexity computation in computer 

science. In this work, the Halstead complexity metrics are used to measure the program complexity of both techniques 

based on their program segment (procedure) 

 

4.1.1    Demonstration of Halstead complexity metric with the Greedy solution program Segment; 

 

Void Greedy( ) 

 { 

Cu=mk;  

For(i= l; I <=; ++1) 

{if ( w[i] > Cu) 

 { 

  if((cu > 0 ) && (i <= n)) 

   x[i] = cu/w[i] 

                             else 

   x[i] = 0; 

 } 

 else 

x[i] = l; 

Cu = Cu – w[i]; 

SumP+ = X[i] * P[i]; 

SumW+ = X[i] * W[i]; 

 } 

}  

 

From the above, the program volume of the Greedy solution segment is given by; 

 V(F) = N log n, where N = 76 

            n = 33 

 V(F) = 76 log 33 

          = 115.41 

 

 

n N 

2 2 

1 1 

4 4 

7 12 

4 5 

- 1 

5 12 

2 6 

1 1 

- 4 

1 1 

1 1 

- 4 

1 6 

3 7 

1 7 

- 1 

- 1 

33 76 
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Demonstration of Halstead complexity metric with the Dynamic Programming solution program Segment 
Void Dynamic() 

{ 

for(i=l;i,=n;++l) 

{ 

for(stage=1; stage<=itemno ;++stage) 

xi=0  

for(i=stage;i<=n;++1) 

{ 

if (stage==l) 

 { 

if(xi==0){ 

*(c[stage]+i =0; }  

else  *(c[stage]+i=b[stage]*xi; 

} 

else{  

if(xi=0) 

{ 

for(i=0;<=n;++i) 

{ 

 *(a[stage]+I = *(b[stage-l]+I); 

 } 

xi = 1 ;  

st = w * x;  

for(i=0;K=n;++l) 

{ 

if (*(a[stage + 1) > *(b[stage] + 1)) 

{ 

cfstage] + i=a[ stage] + 1; 

d[stage] + i=0  

else 

{ 

c[stage] + i=(b[stage] + 1; 

d[stage] + i=l; 

} 

} 

w = a[I] * c[I];  

tw = tw + w; 

p = b[i]*c[i];  

tp = tp + p; 

} 

 

 

 

 

 

 

 

 

Hence, the program volume of the Greedy solution Program segment is given by;  

V(F) = N log n , where N = 194 

    n= 37 

V(F) = 1941og37  

        = 304.29 

 

n N 

2 2 

1 1 

7 12 

3 3 

3 12 

- 1 

5 12 

- 11 

- 1 

- 5 

1 1 

- 6 

1 4 

3 9 

1 1 

- 2 

- 5 

- 1 

 12 

- 1 

1 9 

- 1 

- 4 

2 6 

- 12 

- 1 

- 11 

- 1 

- 8 

- 1 

- 1 

- 7 

- 6 

- 1 

- 1 

2 6 

2 6 

2 6 

1 6 

- 1 

37 194 
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Objective Function Optimal values and Constraint Function values 

As part of the criteria to measure and compare the performance of the two design techniques as they are applied to the 

knapsack problem, the algorithms 1 and 2 are not only used to compute the programs complexity, but also to measure 

and compute the optimal value of the objective function and the value of the Constraint function. 

 

Simulation Description 

Nine randomly generated data sets, ranging from 10 to 175, were used for each program. The data set were chosen to 

be 10, 20, 30, 40, 75, 100,125, 150 and 175. For Set n, similar problem instances were randomly generated using a 

random number generator. Each data set satisfies the following; random Wi and Pi, Wi Z [1,100], 

                    Pi S [1,100], M = 

∑𝑊𝑖/2

𝑛

1

 

The following formulars are used to generate the profits and weights, respectively. 

Profit   = trunk [ 100 x RAN + C] 

Weight = trunk [100 x RAN + C], Where C is any constant and RAN is the Random number generating 

function. 

The computation of the optimal value of the objective function, that is, the maximum profit, £PiXi, the value of the 

constant function, that is, the maximum capacity of knapsack filled, ZWiXi, and the solution vector (Decision variable) 

are as described in section three. 

 

Result Analysis And Discussion 
Programming Complexity measure 
From the result of the program complexity computation, based on the Halstead metric in sections 4.1.1 and 4.1.2. 

respectively as shown in Table 2, it could be observed that the Greedy program version has a volume of 115.41 while 

dynamic programming version has a volume of 304.29. This implies that Dynamic Programming version is more 

complex and voluminous than does Greedy method. 

 

Optimal value Computation 
From the results or outputs of the program execution; as shown in table 2, it could be observed that by using the greedy 

method, the knapsack is being always filled to it's full capacity, since the value of the constant function ∑𝑊𝑖𝑋𝑖is 

always equal to the knapsack capacity, for all the data sets. However, this method gives the minimum profit, as the 

optimal value of the objective function  ∑𝑃𝑖𝑋𝑖 is the lower for all the data sets . Figures 1 land 2 show these results , 

graphically. 

 

The dynamic programming technique gives a better value of the objective function than the greedy method. It increases 

the optimal value of the objective function by an average of 6.27% of the greedy method. For n =1, the constraint 

function value is 99% of the knapsack capacity, 98% for n=125, 95% for n=150 and 96% for n=175, giving an average 

of 96%. Therefore the dynamic programming technique will on the average, fill 96% of the knapsack with a profit of 

6.27% better than the greedy method. From the results the conclusion is that, based on the optimal value for the 

objective function, the dynamic programming technique is better than the greedy method for the solution to the 0/1 

knapsack problem. 

 

The results are clearly shown in the graphical representation of Figs 1 and 2. The averages, which are reported in this 

section, are computed directly from the tables. The percentage for the constant function values is computed by dividing 

the constant function by the capacity of the knapsack, and multiplying the result by 100, while the average is computed 

by dividing the sum of percentages by the number of groups of the sets, 9. 

The performance of one method, x, over the, y, is computed by using the formula 

 

[(x-y)/y]*100%, where x is the value reported for one method and y is that reported for the other method. The average 

performance is then computed as mention earlier. 
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Table 1: Performance Measures unit 

DATA SET, 

 N 
TECHNIQUE 

OPTIMAL VALUE OF 

OBJECTIVE 

FUNCTION 

∑𝑃𝑖𝑋𝑖 

KNAPSACK 

CAPACITY 

 

M 

 

CONTRAINT 

FUNCTION 

VALUE 

∑𝑊𝑖𝑋𝑖 

10 
Greedy Method 

Dynamic Programming 

400.03 

420.00 

350 

350 

350 

345 

20 
Greedy Method 

Dynamic Programming 

990.03 

1065.00 

732 

732 

732 

720 

30 
Greedy Method 

Dynamic Programming 

1550.50 

1705.00 

839 

839 

839 

814 

40 
Greedy Method 

Dynamic Programming 

1967.67 

2025.00 

1040 

1040 

1040 

1040 

75 
Greedy Method 

Dynamic Programming 

2025.00 

2129.00 

1145 

1145 

1145 

1100 

100 
Greedy Method 

Dynamic Programming 

2203.10 

2333.00 

1390 

1390 

1390 

1270 

125 
Greedy Method 

Dynamic Programming 

2500.03 

2693.00 

1768 

1768 

1768 

1990 

150 
Greedy Method 

Dynamic Programming 

2705.00 

2973.00 

2004 

2004 

2004 

1900 

175 
Greedy Method 

Dynamic Programming 

3000.40 

3077.00 

2308 

2308 

2308 

2206 

 
Table 2: Summary of Performance Measures 

ANALYSIS CRITERIA GREEDY METHOD DYNAMIC PROGRAMMING 

Average optimal value of Objective 

Function 
2nd 1st 

Average Constraint Function value 100% 96% 

Program Complexity 155.41 304.29 

 

 

 
Figure 1: Objctive function optimal values analysis 
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Figure 2: Constraint function optimal values analysis 

 

Conclusion  
This paper has been able to analyse and compare two basic techniques; Greedy method   and Dynamic programming, 

for  solving  the  knapsack  problem.  Their performances are measured against the program complexity, optimal value 

of the objective function and value of the constraint function. Dynamic Programming has been considered to be 

effective and efficient than the Greedy method since it yields better optimal value of the objective function than does 

the Greedy. Also, dynamic programming yields an overall optimal solution over long period of time unlike the greedy 

method which only gives the optimal solution for particular stage or period. Though the Greedy method program is 

less complex to write, has less program volume and simpler to construct, than the Dynamic Programming, it is not as 

applicable for practical purposes as does dynamic programming. 
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