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ABSTRACT 
I confirm, in the present short paper, the Firoozbakht conjecture, remained open since 1982. Recall that this 
conjecture is one of the Neil Sloane unsolved prime conjectures list. My Proof of the Firoozbakht conjecture is 

very simple and uses elementary tools of mathematics.  Some important consequences, such as the Andrica 

(remained open since 1986), Cramér (remained open since 1936) and Sinha (remained open since 2018) 

conjectures are deduced from the Firoozbakht conjecture. The Deduction is based on the Taylor formula, the 

intermediate value theorem, the L’Hôpital rule, the Dursat theorem and the growth properties of some elementary 

functions.  
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INTRODUCTION  
Definition1: We call Firoozbakht Conjecture the following assertion « if (��)��� denotes the infinite strictly 

increasing sequence of prime integers then the sequence of general term: �� = ��
	
 is strictly decreasing i.e. ∀� ≥1 ���� < ��  

 

Definition 2: We call Andrica conjecture the following assertion “∀� ≥ 1: ����� − ��� < 1” 

Definition3: We call the strong Cramer conjecture the following assertion”limsup�→�� �
�	 �
(!�(�
))" = 1" 

Definition4: We call Sinha conjecture the following assertion “ ∀� > 4 : ���� − �� < (ln(��))' − ln(��) + 1" 

Some History: 1) Firoozbakht conjecture: The Firoozbakht conjecture was announced by the women Iranian 

Mathematician Farideh Firoozbakht (1962-2019) in 1982 [9], [17], [20], [21], [26]. Faredeh was a mathematical 

professor at the Isfahan University going from pharmacology specialty. 

 

This conjecture is a part of the unsolved prime conjectures listed by Neil Sloane (classed as conjecture No 30). 

This list contains the Riemann Hypothesis proved by M. Ghanim in a paper published by the GJAETS on April 

10, 2017 [11] and contains also the Goldbach conjecture and the twin prime conjecture proved by M.Ghanim in 
two papers published by the GJAETS on May 10, 2018 [13] and on July 10, 2018 [14] respectively.  

By using a table of maximal gaps, Farideh Firoozbakht verified her conjecture up to 4.444×1012 [26]. Now with 

more extensive tables of maximal gaps, the conjecture has been verified for all primes below 4.10�*[18] And later 

below 264 ≈ 1.84×1019 [26]. 

 

Firoozbakht  wrote about herself: « I was born in 1962 in Isfahan, Iran. Since I was seventeen, because of my deep 

affection for the animals, I became a vegetarian. 

 

After graduating from high-school, I went to the University of Isfahan to continue my studies in pharmacology 

which is one of the most favored disciplines in Iran. But, since I was very fond of mathematics, especially number 

theory, I changed my major to mathematics in the third year and I became graduated in 1987. 

 

Afterwards, I went to Isfahan University of Technology to continue my postgraduate studies in mathematics. 
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Since 1992, I have been instructing mathematics at the Iranian universities and currently I am teaching at the 

University of Isfahan. 

 

I have done research in number theory and I have been able to find beautiful and interesting relations. My favorite 

field is “The Gap between Prime Numbers.” 

 

Conjecture No. 30, came to mind in 1982, while I was studying the proof of the “Prime Number Theorem”. I think 

that the conjecture is the most important conjecture related to prime numbers, it shows one of the most interesting 

and beautiful behaviors of the prime numbers and I believe working on this conjecture could guide us to important 

results in number theory ».[9] 
 

2) Andrica conjecture : This conjecture was announced  in 1986 (See [1]) by the Romanian mathematician (born 

in 1956) Dorin Andrica. The conjecture was numerically confirmed  for any integer � such that: 1 ≤ � ≤4. 10�*.The Andrica conjecture is generalized by considering the equation : ����- − ��- = 1 where . can be any 

positive number. The maximal solution is ./0- = 1 as it can be seen easily (occuring for �=1). The minimal 

solution is conjectured to be  ./1� = 0.567148 … occuring for � = 30. This last conjecture can be stated 

as :����- − ��- < 1 for . < ./1� = 0.567148 … 

 

3) Cramér Conjecture : In 1920, the Suidish mathematician Harald Cramér (1893-1985) proved (see [4]), under 

the Riemann hypothesis, the weak form ���� − �� = 89��� ln(��):(O denoting the Bachmann-Landau symbol 

defined below). Currently the unconditional result is ���� − �� = 8(��;.<=<) due to R.Baker and G. Harman (See 

[2]) and ���� − �� = 8(��;.<'<)  due to R.Baker, G. Harman and J. Pintz (See [3]). Cramer conjectured, using 

probabilistic methods, the strong form  limsup�→�� �
�	 �
(!�(�
))" = 1 in 1936 (See [5]).  

 

4) Granville Conjecture : In 1995, the British Mathematician Andrew Granville (Born In 1962) has affined (see 

[15]) the initial Cramér conjecture by conjecturing that :limsup�→�� �
�	 �
(!�(�
))é = 2@ A = 1.1229 … Where C =0.5772 …denotes the Euler-Mascheroni Constant (M. Ghanim has resolved-in the affirmative- the problem of 

irrationality of C remained open since 1734 by a paper published in the GJAETS in the May 10, 2017 issue [12]). 

This conjecture is false as it will be showed in the present paper. 

 

5) Sinha conjecture : In 2018, the Indian Mathematician Sinha Niloptal Kanti has showed (See [19]), supposing 

the Firoozbakht conjecture true, what I call here the Sinha conjecture. 

 

The Note: The present short note gives an elementary proof of the Firoozbakht conjecture based on simple tools 
of mathematics.  Also some important consequences are deduced, such as the Andrica conjecture remained open 

since 1986, the Cramer conjecture remained open since 1936 and the Sinha conjecture remained open since 2018. 

 

The organization of the paper: The paper is organized as follows. §1 is an introduction giving the necessary 

definition and some History. The §2 gives the ingredients of the proofs. The §3 gives the proof of the Firoozbakht 

conjecture. The §4 gives the proofs of some consequences of the conjecture. The § 5 gives some references for 

further reading. 

 

INGREDIENTS OF THE PROOFS 
Definition 5: A positive integer � is called to be prime if its set of divisors is D(�) = {1, �} 

We denote by ℙ the set {� ∈ ℕ, � is prime} = {2, 3, 5, 7, 11, 13, 17,…} of prime integers and for any real number . ≥ 2 by ℙ(.) the set {� ∈ ℙ, � ≤ .} and by N(.) = OPQR(ℙ(.)) the cardinal of ℙ(.) i.e. the number of its 

elements. 

 

Proposition1: (Euclid) [8] the set ℙ is an infinite strictly increasing sequence (��)���  

 

Proposition2 : ∀� ≥ 1  we have: N(��) = � 

 

Proposition3 : (Prime number theorem (PNT)) (Hadamard [16]-De La valée Poussin [6]), we have :  limV→��
π(t)ln (X)X = 1 
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Remark: The PNT was proved independently in 1896 by the French mathematician Jacques Salomon Hadamard 

(1865-1965) and the Belgian mathematician Charles Jean De La Valée Poussin (1866-1962) 

 

Proposition4 : (Dusart  theorem (See The assertion (5) of theorem 1.10 in [7])) We have : 

(i)∀. ≥ 5393   -Y(-) ≤ ln(.) − 1  

(ii)∀. ≥ 599  -!�(-) (1 + �!�(-)) ≤ N(.) 

(iii)∀. ≥ 355991   N(.) ≤ -!�(-) (1 + �!�(-) + '.<�(!�(-))") 

 

Proposition5: (continuity) [33]:  (i)  U ⊂ ℝ  is open if: ∀P ∈ ]∃_ > 0 ]P − _, P + _[⊂ ] 

(ii) limV→0 b(X) = c ⇔ ∀e > 0∃_ > 0 ∀X ∈ ]  P − _ < X < P + _ ⇒ c − e < b(X) < c + e 

(iii)b: ] → ℝ is continuous in a point a ⇔ limV→0 b(X) = b(P) 

(iv)b: ] → ℝ is continuous⇔ ∀8 an open subset of ℝ  b �(8) = {t∈ ], b(X) ∈ 8} is an open subset of ].  
 

Proposition 6: (connected spaces) [35] (i) an open subset ] of a topological space is connected if:                                                 ∀g, h open subsets of ] l g]h = ]g ∩ h = ∅ ⇒ g = ] oQ h = ] 

(ii)The connected parts of ℝ are the intervals. 
 

Proposition7: (the intermediate value theorem) [27] let b: [P, p](P < p) → ℝ a continuous function. Then: b(P)b(p) < 0 ⇒ ∃O ∈]P, p[ b(O) = 0 

If b is increasing or decreasing in ]P, p[: O is the sole zero of b in ]P, p[. 
 

Proposition8: (infimum and supremum) [28] (i) we denote by inf (A) the infimum of the set A i.e. the greatest 

lower bound of A and by sup (A) the supremum of A i.e. the smallest upper bound. 

(ii) Any non empty part A of ℕ has an inf (A)∈A 

(iii) c  is an adherent point of the sequence (.�)� ⇔ ∃q: ℕ → ℕ a bijection such that: lim�→�� .r(�) = c 
(iv)We define: liminf�→��.� = sup/�/s inf��t.� ∈ [−∞, +∞] 
(v) liminf�→��.� is the smallest adherent point. 

(vi)We define: limsup�→��.� = inf/�/ssup��t.� ∈ [−∞, +∞] 
(vii)limsupf�→��.� is the greatest adherent point 

(viii)We have: ∀� ≥ v;  .� < P ⇒ limsup�→��.� ≤ P 

(ix)We have: ∀� ≥ v;  .� > p ⇒ liminf�→��.� ≥ p 

 

Proposition9: (The Greatest common divisor) [23] (i) Recall that: gcd (P, p) denotes the positive greatest 

common divisor of the integers P, p 

(ii) Example: ∀� ≥ 1 gcd(�� , ����) = 1 

(iii)gcd(P, p) = 1 ⇔ ∀v, � ≥ 1 gcd(P� , p/) = 1  

(iv)(The Bezout theorem): gcd(P, p) = 1 ⇔ ∃z, { ∈ ℤ such that: zP + {p = 1 

 

Proposition10: (The Arithmetical Fundamental Theorem) [25] we have:                  ∀� integer ≥ 2∃(~�)���a sequence of natural integers such that:�the set {k, α� ≠ 0}is finite� = ∏ ���������  

 

Proposition11: (Increasing and decreasing functions) [31], Recall that: 

 (i) a function b is derivable in a point � if  limV→� �(V) �(�)V � = b�(�) ∈ ℝ 

(ii) A function b is strictly decreasing on ]P, p[⇔ ∀., � ∈ ]P, p[ ∶ . < � ⇒ b(�) < b(.) 

(iii) A function b is strictly increasing on ]P, p[⇔ ∀., � ∈ ]P, p[ ∶ . < � ⇒ b(.) < b(�) 

(iv) If b is a derivable function of derivativeb�, then:                                        b Strictly decreasing on] P, p[ ⇔ ∀X ∈]P, p[ b�(X) < 0 

(v) If b is a derivable function of derivativeb�, then:                                        bStrictly increasing on] P, p[ ⇔ ∀X ∈]P, p[ b�(X) > 0 
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Proposition12: (The Taylor Formula with Lagrange rest) [29] suppose that the function b has a continuous 

derivative b�  in the interval [P, p] and that the second derivative b�� exists in the interval]P, p[, then ∀. ∈[P, p]∃O ∈]P, .[  b(.) = b(P) + ��(0)�! (. − P) + ���(�)'! (. − P)' 

 

Proposition13: (the l’Hôpital rule) [30] if lim-→0 b(.) = g and lim-→0 �(.) = h  with g, h are both null or are both 

infinite, we say that lim-→� �(-)�(-) is an indefinite form IF  
;;  oQ �� 

(i) If b, � are derivable on the interval] P, p[except perhaps in a point O ∈]P, p[ and lim-→� �(-)�(-) is IF
;; 

with : ��(.) ≠ 0 boQ . ≠ O, then  lim-→� �(-)�(-) = lim-→� ��(-)��(-) 
(ii) The result of (i) is true if lim-→� �(-)�(-) is IF

�� 

(iii) If b� , �� satisfy the same conditions, the process is repeated. 

(iv) The result is extended to the cases : . → ∞, . → P�, . → p  

 

Proposition14: (equivalent sequences) [32] we have: 

(ii) lim�→�� .� = c ⇔ ∀e > 0∃� ∈ ℕ∀� ≥ �  c − e < .� < c + e 

(ii) Two sequences .� , �� are equivalent if lim�→�� -
�
 = 1 

(iii)If .� , �� are equivalent, then lim�→�� .� = lim�→�� ��  

 

Proposition15: (The Bolzano-Weierstrass Theorem) [34] any bounded sequence (.�)� ⊂]P, p[ has a convergent 

subsequence denoted, (.r(�))� , with:q(�) > � (∀�) and lim�→�� .r(�) ∈ [P, p]. 
 

Definition6: (The Bachman-Landau symbol) [36] we have: �(.) = 89b(.): when  . → +∞ ⇔ ∃�∃O > 0∀. ≥ � |�(.)| < O|b(.)| 
 

Proposition16: (the twin prime conjecture) [9] [14] we have:                         ∃q; ℕ → ℕ  a bijection such that ∀� ∈ ℕ  �r(�)�� − �r(�) = 2 

 

Proposition17: (E. Westzynthius theorem) [22] we have  limsup�→��
�
�	 �
!� (�
) = +∞ 

 

Proposition19: (The squeeze theorem (or pinching theorem or sandwich rule) [37] Let E a topological space. Let  g a subset of E. Let a an adherent point of g (i.e. ∀8 an open subset of E containing a we have 8 ∩ g ≠ ∅). 
Letb, �, ℎ:g → [−∞, +∞], three functions such that b ≤ � ≤ ℎ on A. if lim-→0 b(.) = lim-→0 ℎ(.) = � ∈ [−∞, +∞], 
then: � converges in P and  lim-→0 �(.) = � 

 

Proposition20: (i) The sinha conjecture (see definition 4 above) can be confirmed numerically for 5 ≤ � ≤ 700 

(ii) The Andrica conjecture (see definition2 above) was confirmed numerically for 1 ≤ � ≤4.10�* (See [38]) 

 
PROOF OF THE FIROOZBAKHT CONJECTURE 

Theorem: (Firoozbakht conjecture) the sequence of general term  �� = ��
	
 is strictly decreasing. That is ∀� ≥

1 we have: ���� = ����
	
�	 < �� =  ��

	
 

Proof: (of the theorem) 
The Proof of the theorem will be deduced from the claims below. 

Claim1: We have: ∀� ≥ 1  ��
	
 ≠ ����

	
�	  

Proof: (of claim1) 

*Suppose contrarily that: ∃� ≥ 1 such that: ��
	
 = ����

	
�	  

*That is: ����� = �����  

*By the assertions (ii) and (iii) of proposition9, we have : gcd(�� , ����) = 1 ⇒ gcd (�����, ����� )=1 
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*So, by the Bezout theorem (the assertion (iv) of proposition9), ∃z, { ∈ ℤ such that: z����� + {����� = 1 =z����� + {����� = (z + {)����� 

*So: �� = 1 

*This being impossible, because ∀� ≥ 1�� ≥ 2, the result follows 

Definition7:  for e ∈]0,1[, � ∈ ℕ∗ and v ∈ ℕ∗, define the sequence of continuous functions:  

                                                             e → ~�,/(e) = �� 	�� �
�	
	
�	¡ ( 	���)�
	


�
�	
	
�	��


	
     

Claim2: ∀ e ∈]0,1[ ∀� ∈ ℕ∗∀ v ∈ ℕ∗ we have: −e − �/ < ~�,/(e) < e − �/ 

Proof: (of claim2) 

*We have: ~�,/(e) − �e − �/� = �� 	�� �
�	
	
�	¡ ( 	���)�
	


�
�	
	
�	��


	
 − �e − �/� = �� 	�� �
�	
	
�	¡ ( 	���)�
	
 (� 	�)(�
�	

	
�	��
	
)
�
�	

	
�	��

	
     

=
 ( 	���)�
	
 (� 	�)(��
	
)

�
�	
	
�	��


	
 = −2e 
�
	


�
�	
	
�	��


	
 < 0   

*We have: ~�,/(e) + �e + �/� = �� 	�� �
�	
	
�	¡ ( 	���)�
	


�
�	
	
�	��


	
 + �e + �/� = �� 	�� �
�	
	
�	¡ ( 	���)�
	
�(�� 	�)(�
�	

	
�	��
	
)
�
�	

	
�	��

	
     

=
( 	� �)�
�	

	
�	�(�� 	�)(�
�	
	
�	)

�
�	
	
�	��


	
 = 2e 
�
�	

	
�	
�
�	

	
�	��

	
 > 0   

*The result follows. 

Claim3: (i)∀ e ∈]0,1[ ∀� ∈ ℕ∗∀ v ∈ ℕ∗, we have: ~�,/(e) = − �/ + e �
�	
	
�	 �


	

�
�	

	
�	��

	
 

(ii) ∀ e ∈]0,1[ ∀� ∈ ℕ∗  lim/→�� ~�,/(e) = e �
�	
	
�	 �


	

�
�	

	
�	��

	
 

Proof: (of claim3) 

(i) By definition, we have: ~�,/(e)=

�� 	�� �
�	
	
�	¡ ( 	���)�
	


�
�	
	
�	��


	
 =  	� �
�	
	
�	��
	
¡��(�
�	

	
�	 �
	
)
�
�	

	
�	��

	
 = − �/ + e �
�	

	
�	 �

	


�
�	
	
�	��


	
  

(ii)The assertion Follows immediately form the assertion (i) of claim3. 

Claim4: ∀� ∈ ℕ∗∃v� ∈ ℕ∗such that ∀e ∈] ���� , 1[ we have:  
�/
 < −~�,/
(e) or ~�,/
(e) > 0 

Proof: (of claim4) 

*Suppose contrarily that: ∃� ∈ ℕ∗∀v ∈ ℕ∗∃e/ ∈] ���� , 1[ �/ ≥ −~�,/(e/) ≥ 0 

*By the Bolzano-Weierstrass :( e/)/ ⊂] �� , 1[ has a convergent subsequence (er(/))/, such that q(v) >v ∀v ≥ 1 and  e = lim/→�� er(/) ∈ [ ���� , 1], 
*We have: ∀v ∈ ℕ∗: �r(/) ≥ −~�,r(/)9er(/): ≥ 0 

*So, tending v → +∞: we have: 0 = lim/→�� �r(/) ≥ − lim/→�� ~�,r(/)9er(/): = −e �
�	
	
�	 �


	

�
�	

	
�	��

	
 ≥ 0 

*That is −e �
�	
	
�	 �


	

�
�	

	
�	��

	
 = 0 i.e. e = 0 oQ ����

	
�	 − ��
	
 = 0 

*But “e = 0" is impossible because: e ∈ [ ���� , 1] ⇒ e ≥ ���� > 0 and “����
	
�	 − ��

	
 = 0" is impossible by claim1. 

(assuring that: ∀� ≥ 1  ��
	
 ≠ ����

	
�	 ) 
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*So, our starting absurd hypothesis “∃� ∈ ℕ∗ ∀v ∈ ℕ∗∃e/ ∈] ���� , 1[0 ≤ −~�,/(e) ≤ �/ " is false, so its 

negation: “∀� ∈ ℕ∗∃v� ∈ ℕ∗∀e ∈] ���� , 1[ :  −~�,/
(e) > �/
 oQ ~�,/
(e) > 0" is true. 

Claim5:  ∀� ∈ ℕ∗∃v� ∈ ℕ∗  such tha ∀e ∈] ���� , 1[ we have:  −~�,/
(e) > �/
 

Proof: (of claim5) 

*Consider, for any � ∈ ℕ∗, the subsets: 

                             g� = {e ∈] ���� , 1[∶ −~�,/
(e) > �/
 } and h� = {e ∈] ���� , 1[∶ ~�,/
(e) > 0 }  

*The function e → ~�,/
 (e) being continuous: g� and h� are open subsets of]
����, 1[ 

*By claim4: ] ���� , 1[= g� ∪ h� 

*We have: g� ∩ h� = ∅, because: 0 > −~�,/
(e) > �/
 > 0 is impossible 

*So, ] ���� , 1[ being connected, we have: ∀� ∈ ℕ∗ g� =] ���� , 1[ oQ h� =] ���� , 1[ 
First case: h� =] ���� , 1[ 
*So: ∀� ∈ ℕ∗∃v� ∈ ℕ∗∀e ∈] ���� , 1[~�,/
(e) > 0  

*In particular, because:�� = 2 P�R �' = 3, we have: 

 For � = 1, ∃v ∈ ℕ∗∀e ∈] �' , 1[0 < ~',/(e) = − �/ + e �"
	" �	

�"
	"��	

= − �/ + e =	" '
=	"�' = − �/ − 0.071. e < 0 

*This being impossible, this case cannot occur. So the below second case is true: 

Second case: g� =] ���� , 1[ 
*That is: ∀� ∈ ℕ∗∃v� ∈ ℕ∗∀e ∈] ���� , 1[ we have: −~�,/
(e) > �/
 

*So, claim 5 is proved. 

Claim6:  (i) ∀�, v ∈ ℕ∗∀e ∈]0,1[ , we have: 0 < e − �/ − ~�,/(e) 

(ii) ∀�, v ∈ ℕ∗∀e ∈]0,1[  �
�	
	
�	

�

	
 = �� 	���
,�(�)

� 	� �
,�(�)  
Proof: (of claim6) 

(i)The result follows immediately from the right inequality of claim2. 

(ii)We have: 

~�,/(e) = �� 	�� �
�	
	
�	¡ ( 	���)�
	


�
�	
	
�	��


	
  ⇔ ~�,/(e) £����
	
�	 + ��

	
¤ = �e − �/� £����
	
�	 ¤ − ( �/ + e)��

	
 

⇔ ��
	
 �~�,/(e) + �/ + e� = ����

	
�	 ¥e − �/ − ~�,/(e)¦ ⇔ �
�	
	
�	

�

	
 = �� 	���
,�(�)

� 	� �
,�(�)  
 
RETURN TO THE PROOF OF THE THEOREM 

*∀� ∈ ℕ∗, by claim6, written for v = v� and e ∈] ���� , 1[ given by claim 5, we have: �
�	
	
�	

�

	
 = �� 	�
��
,�
(�)

� 	�
 �
,�(�)  

*But, by claim5 and the assertion (i) of claim6, we have successively: ∀� ∈ ℕ∗ 

§0 < e − �/
 − ~�,/
 (e)
�/
 < −~�,/(e)  ⇒ '/
 + e < e − 2~�,/
(e) ⇒ �/
 + e + ~�,/
(e) < e − �/
 − ~�,/
(e) 

⇒ 	�
����
,�
(�)
� 	�
 �
,�
(�) < 1 ⇒ �
�	

	
�	
�


	
 = �� 	�
��
,�(�)
� 	�
 �
,�(�) < 1 ⇒ ∀� ∈ ℕ∗����

	
�	 < ��
	
  

*This finishes the proof of the theorem. 
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CONSEQUENCES 

1. PROOF OF SOME USEFULL LIMITS AND INEQUALITIES 

Corollary1:  We have (i) lim�→�� ��
� = 0   (ii) lim�→�� ��
 = 0 

(iii) lim�→�� !� (�
)� = 0 

Proof: (of corollary1) 

(i)*By the assertion (i) of the Dusart theorem, we have: 
�
� = ��
��
� ≤ ln (��) for �� ≥ 599 

*So: 0 < ��
� ≤ !� (�
)��
  

*But by the L’Hôpital rule: limV→�� !� (V)√V = ©ª ���� = limV→�� (!�(V))�
(√V)� = limV→��

	«	"√« = limV→�� '√V = 0 

*So: lim��→� !� (�
)��
 = 0 

*The result follows by the squeeze theorem. 

(ii)*By the assertion (iii) of the Dusart theorem, we have: 0 < ��� ≤ 1ln(��) (1 + 1ln(��) + 2.51(ln(��))')∀�� ≥ 355991 

*The result follows by the squeeze theorem. 

(iii)The result will be deuced from the claims below. 

Claim7: We have: lim�→��
(¬­(®
))"®
¬­ (®
)
 = 1 

Proof: (of claim7) 

By combination of proposition2 and proposition3, we have: 

lim�→��
(ln(��))'��ln (��)� = lim�→��

nln (��)�� = lim�→��
π(p�)ln (��)�� = 1 

Claim8 : We have : (i) limV→�� !� (V)√V = 0 

(ii) lim�→��
(!�(�
))"

�
 = 0  

Proof : (of claim8) 

(i)By the L’Hôpital rule limV→�� !� (V)
V	" = ©ª �� = limV→�� (!�(V))�

(V	")� = limV→��
	«	"V¯	" = limV→�� '√V = 0 

(ii)So:  lim�→�� (!�(�
))"
�
 = ( lim�→�� !� (�
)

�
	" )' = ( limV→�� !� (V)
V	" )' = 0  

Claim9:  We have: 

(i) lim�→�� !� (�
)� = 0 

(ii) lim�→�� ��
	
 = 1 

Proof: (of claim9) 

(i)The result follows by combination of proposition 14 (assuring that two equivalent sequences have the same 

limit), claim7 (assuring that the sequence of general term 
!� (�
)�  is equivalent to the sequence 

(!�(�
))"
�
 ) and the 

assertion (ii) of claim8 (assuring that : lim�→�� (!�(�
))"
�
 = 0)  

(ii) By the assertion (i) of claim9, we have: 

*  lim�→�� ��
	
 = lim�→�� @¬­ (®
)
 = @ !°t
�→±¬­ (®
)
 = @; = 1 

Corollary2:  lim�→�� !� (�
�	)!� (�
) = 1 

Proof: (of corollary 2) 

*By the Theorem, we have: ∀� ≥ 1   1 ≤ !� (�
�	)!� (�
) ≤ ����  
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*So: lim�→�� 1 = 1 ≤ lim�→�� !� (�
�	)!� (�
) ≤ lim�→�� ���� = 1 ⇒ lim�→�� !� (�
�	)!� (�
) = 1 

Corollary 3: We have: ∀� ≥ 1  �� ≤ 2� 

Proof: (of corollary 3) 

*By multiplication, member to member, of the relations- deduced from the theorem- in the below system, we have 

successively: ∀� ≥ 1 

  
⎩⎪⎪
⎨
⎪⎪⎧

!� (�")!� (�	) ≤ '�!� (�¶)!� (�") ≤ ='…!� (�
¯	)!� (�
¯") ≤ � �� '!� (�
)!� (�
¯	) ≤ �� �

 ⇒ !� (�
)!� (�
¯	) !� (�
¯	)!� (�
¯") … . !� (�¶)!� (�") !� (�")!� (�	) = !� (�
)!� (�	) = !� (�
)!� (') ≤ �� � � �� ' … . =' '� = � 

⇒ ln (��) ≤ ln (2�) ⇒ �� ≤ 2�  

Corollary 4:  ∀� ≥ 109  � < �� < �'ln (2) < �' 

Proof: (of corollary4) 

*By corollary 3, we have: 
�
�!� (�
) ≥ �
�!� ('
) = �
�"!� (') 

*But, by the Dusart theorem (See the assertion (ii) of proposition 4), we have: ∀�� > 599: �
�!� (�
) < 1 

*So: ∀� ≥ 109  �
�"!� (') < 1  

*The result follows. 

Remark:  (i) Show by recurrence that:∀� ≥ 1 � < ��  

*We have: � = 1 < �� = 2 

*Suppose that: � < ��  and show that: � + 1 < ���� 

*By the Euclid theorem (See proposition 1), we have: l�� < ����� < �� ⇒ · �� + 1 ≤ ����� + 1 < 1 + �� ⇒ � + 1 < 1 + �� ≤ ���� ⇒ � + 1 < ���� 

(ii)We have: 599 is prime  with N(599) = 109 
Corollary 5: we have:            ∀� integer ≥ 2∃(~�)��� a sequence of integers such that:·the set {k ≥ 1, α� ≠ 0}is finite� ≤ 2∑ ����±�¹	   
Proof: (of corollary 5) 

*By the arithmetical fundamental theorem: ∀� ≥ 2∃(~�)���such that:�the set {k, α� ≠ 0}is finite� = ∏ ���������   

*So, by corollary 3: � = ∏ ��������� ≤ ∏ 2�������� = 2∑ ����±�¹	  

*So: ∀� integer ≥ 2∃(~�)��� a sequence of integers such that:·the set {k ≥ 1, α� ≠ 0}is finite� ≤ 2∑ ����±�¹	  

Corollary6  ∀� ≥ 1 we have: (!� (�
�	)!� (�
) )� < @ 

Proof: (of corollary 6) 

*By the theorem, we have: ∀� ≥ 1 ln (����)ln (��) < 1 + 1� ⇒ ∀� ≥ 1(ln (����)ln (��) )� < (1 + 1�)�  

*Claim10: We have: lim�→��(1 + ��)� = @ 

Proof: (of claim10) 

*By the L’Hôpital rule limV→; !� (��V)V = ©ª ;; ⇒ limV→; !� (��V)V = limV→; (!�(��V))�
V� = limV→;

		�«� = 1  

*Letting X = �� → 0  for � → +∞, we have: (1 + ��)� = @�!� (��	
) = @¬­ (	�«)«  

*So: lim�→��(1 + ��)� = limV→; @¬­ (	�«)« = @ !°t«→s¬­ (	�«)« = @� = @ 

*Claim11:  We have: 
�V�� < ln (1 + �V) ∀X > 0 

Proof: (of claim11) 

*Consider the derivable function: ℎ(X) = ln �1 + �V� − ���V  
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*We have: limV→�� ℎ(X) = limV→�� ln (1 + �V) − limV→�� ���V = ln(1) − 0 = 0 

*We have: ℎ�(X) = �(��V)" − �V(V��) = V (��V)V(��V)" = − �V(��V)" < 0 ∀X > 0 

*So: ∀X > 0  ℎ(X) = ln �1 + �V� − ���V  > limV→�� ℎ(X) = 0 

*Claim12 (i) the function z(X) = Xln (1 + �V) is strictly increasing forX > 0. 

(ii)The sequence of general term: z� = (1 + ��)� is strictly increasing. 

(iii) @ = �z����(1 + ��)� 

Proof: (of claim12) 

(i)By claim10, we have: z�(X) = ln �1 + �V� − ���V > 0, so the result follows. 

(ii)The result follows immediately from claim12 (i). 

(iii) The result follows by combination of claim10 and the assertion (ii) of claim12. 

 
RETURN TO THE PROOF OF COROLLARY6: 

We have: ∀� ≥ 1(!� (�
�	)!� (�
) )� < (1 + ��)� ≤ �z����(1 + ��)� = @ 

Corollary7: ∀� ≥ @ we have: (!� (�
�	)!� (�
) )� < �ln (�) 

Remark: we have: @ = 2.7182881 …. so:∀� integer ≥ @ ⇔ ∀ � integer ≥ 3 

Proof: (of corollary 7) 

*Consider the function {(X) = X ln(X) − @ 

*{(X) = 0 ⇔ X = @ 

*{�(X) = ln(X) + 1 

*{�(X) = 0 ⇔ X = @ � 

*{ Strictly increasing ⇔ {�(X) > 0 ⇔ ln(X) > −1 ⇔ X > @ � 

*So: @ > @ � ⇒ { is strictly increasing for X ≥ @ ⇒ {(X) = X ln(X) − @ ≥ @ ln(@) − @ = @ − @ = 0 

*So, by corollary 4: ∀� ≥ @: (!� (�
�	)!� (�
) )� < @ ≤ �ln (�) 

Remark:  We have: 2 ln(2) − (!�(�¶)!�(�"))' = 2 ln(2) − (!�(<)!�(=))' = −0.0786 … < 0 

 
2. PROOF OF THE SINHA CONJECTURE: 
Corlollary8: (Nilotpal Kanti  Sinha conjecture [19]) we have: 

                  ∀� > 4  ���� − �� < (ln(��))' − ln(��) + 1  

Proof: (of corollary 8) 

Corollary 8 will be deduced from the claims below. 

Claim13:   ∀� ≥ 1∃O� ∈]0, !� (�
)� [∶  @¬­ (®
)
 = 1 + !� (�
)� + º»
' (!� (�
)� )' 

Proof: (of claim13) 

*Writing proposition 12 for the function b(X) = @V  on [0, !� (�
)� ], we have: 

∃O� ∈]0,  !� (�
)� [ such that: @¬­ (®
)
 = 1 + !� (�
)� + º»
' (!� (�
)� )' 

Claim14: We have: 
�
� < ln(p�) − 1 ∀� ≥ 701 

Proof: (of claim14) 

*By the Dursat theorem (the assertion (i) of proposition 4), we have: ∀�� ≥ 5393 ��ln(��) − 1 ≤ N(��) = n 

*5393 being a prime integer with N(5393) = 701, the result follows. 

Claim15: We have: (i) the function b(X) = √X − 4 ln(X) + 2 is increasing for X ≥ 64 and decreasing for 0 < X ≤64 

(ii)The continuous function b(X) = √X − 4 ln(X) + 2  has only two zeros: 1 < ~ < 64 and 64 < ¼ < 535 

(iii)∀X ≥ 535 √X − 4 ln(X) + 2  ≥ 0 

(iv)The continuous function�(X) =   √X − (ln(X))' + ln (X) is increasing in] 535, +∞[ and has only one zero  _ ∈ 

] 535, 3347[ 
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(v)∀X ≥ 3347  √X ≥ (ln(X))' − ln (X)  

Proof: of (claim15) 

(i) *We have: b�(X) = �'√V − ½V = √V *'V  

*b Increasing ⇔ X ≥ 64 = 8' and b decreasing ⇔ X ≤ 64 = 8' 

(ii)*We have: �(1) = 3 > 0 and �(64) = −6.6 … < 0 

*So, by the intermediate value theorem: ∃~ ∈]1,64[ such that b(~) = 0 

*So: b being strictly decreasing on] 1, 64[: ~ is the single zero in this interval. 

*We have:b(64) = −6.6 … < 0 and b(535) = 0.001. . > 0 

*So, by the intermediate value theorem: ∃¼ ∈]64,535[ such that b(¼) = 0 

*So: b being strictly increasing on] 64, +∞[: ¼ is the single zero in this interval. 

(iii)So: ∀X ≥ 535 > ¼  b(X) ≥ b(¼) = 0 

(iv)*We have: ��(X) = �'√V − '!� (V)V + �V = √V ½ !�(V)�''V > 0 boQ X ≥ 535 (by the assertion (iii) of claim 16) 

*We have: �(535) = −10. .05 … < 0 P�R �(3347) = 0.1 … > 0 

*So: by the intermediate value theorem:∃_ ∈]535,3347[ �(_) = 0, which is the sole zero because �is strictly 

increasing in this interval. 

(v)So: ∀X ≥ 3347 > _  �(X) = √X − (ln(X))' + ln(X) > �(_) = 0 

Claim17: ∀� ≥ 701  (!� (¾­))"(!�(�
) �)� < 1 

Proof: (of claim17) 

Remark:  3347 is a prime integer with N(3347) = 457 

*By claim 14, we have: 
�
�(!�(�
) � ) < 1 for � ≥ 701 

*By the assertion (v) of claim 15, we have: for �� ≥ 3347 i. e. � ≥ 457: �� ≥ (ln(��))'(ln(��) − 1)'  

*So: 1 > �
�(!�(�
) � ) > (!�(�
))"(!�(�
) �)�  for � ≥ 701 

 
RETURN TO THE PROOF OF COROLLARY 8 
*By the theorem and claim13, we have successively: ∀� ≥ 1  ����

	
�	 < ��
	
 ⇒ ���� < ��


�	
 = ����
	
 = ��@¬­ (®
)
 = ��(1 + !� (�
)� + º»
' (!� (�
)� )')  

*But, by corollary 3:  0 < O� < !� (�
)� < ln(2) ⇒ @�
 < @!� (') = 2 

*That is, by claim14 and claim 16: ∀� ≥ 701 ���� − �� < �
 !�(�
)� ¥1 + �!�(¾­)� �¦ < ln(��) (ln(��) − 1)(1 + !�(�
)� )  

=(ln(��))' − ln(��) + (!� (¾­))"(!�(�
) �)� < (ln(��))' − ln(��) + 1 

Remark:  We have showed:∀� ≥ 701: ���� − �� < (ln(��))' − ln(��) + 1, and this inequality can be verified 

for 5 ≤ � ≤ 700. So, we have well: ∀� ≥ 5 ���� − �� < (ln(��))' − ln(��) + 1. 
 
3. PROOF OF THE ANDRICA CONJECTURE 
Corollary9: (Andrica conjecture)[1] we have: ∀� ≥ 1 

(i) ���� − �� < 2���  

(ii) ����� − ��� < 1 

(iii) lim�→�� �
�	�
 = 1 

(iv) ∀� ≥ 2∃! _� ∈] �' , 1[ such that ¿∀. ∈ [�' , _�[   ����- − ��- < 1����À
 − ��À
 = 1  

Proof: (of corollary 10) 

(i)The proof of the assertion (i) of corollary 9 will be deduced from the claims below. 

Claim17:  The function Á(X) = √X + 1 − 2ln (X) is strictly increasing for X ≥ 16 and strictly decreasing for 0 <X ≤ 16. 

Proof: (of claim17) 

*We have: Á�(X) = �'√V − 'V = √V ½'V  
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*Á Strictly increasing ⇔ Á�(X) > 0 ⇔ √X − 4 > 0 ⇔ X > 16 

*Á Strictly decreasing ⇔ Á�(X) < 0 ⇔ √X − 4 < 0 ⇔ X < 16 

Claim18: the function Á(X) = √X + 1 − 2ln (X) has only two zeros: 1 < ~ < 16 P�R16 < ¼ < @½ 

Proof: (of claim18) 

*Á is continuous on] 0, +∞[ 
*We have:Á(1) = 2 > 0 and Á(16) = 5 − 8 ln(2) = −0.54 … < 0 

*We have:Á(16) = −0.54 … P�R Á(@½) = √@½ + 1 − 2 ln(@½) = @' + 1 − 8 = 0.38 … > 0 

*So, by the intermediate value theorem: ∃~ ∈]1,16[ such that: Á(~) = 0 and ∃¼ ∈]16, @½[ such that Á(¼) = 0 

*Á being, by claim15, strictly decreasing on] 1, 16[and strictly increasing on] 16, @½[: ~, ¼ are the sole zeros. 

Claim19: ∀X > @½   we have: √X + 1 − 2 ln(X) > 0 

Proof: (of claim19) 

By claim17 and claim 18, we have: X > @½ > ¼ > 16 ⇒ Á(X) = √X + 1 − 2 ln(X) > Á(¼) = 0  ÂÃÄÅÆÇÈ:  ∀X > @½ we have: (ln(X))' − ln(X) + 1 < 2√X 

Proof: (of claim20) 

*Consider the derivable function: q(X) = 2√X − (ln(X))' + ln(X) − 1 

*By claim8, we have: q�(X) = �√V + �V − 2 !� (V)V = √V�� '!� (V)V > 0 ∀X > @½ > ¼ > 16 

*So: ∀X > @½: q(X) = 2√X − (ln(X))' + ln(X) − 1 > q(@½) = 2@' − 16 + 4 − 1 = 1.77 … > 0 

 
RETURN TO THE PROOF OF THE ASSERTION (i) OF COROLLARY 9: 
*By corollary 8 and claim 20, we have: ∀� ≥ 701 ���� − �� < (ln(��))' − ln(��) + 1 < 2��� 

*So: ∀� ≥ 701 ���� − �� < 2���  

Remark: We have: �� ≥ @½ ⇒ �� ≥ 59 ⇒ � ≥ 17 (N(59) = 17) 

(ii)*We have: '��
��
�	���
 < 1 ⇔ 2��� < ����� + ��� ⇔ ��� < ����� (always true) 

 *So, by the assertion (i) of corollary 9, we have: 

 ���� − �� < 2��� ⇒ 9����� − ���:9����� + ���: < 2��� ⇒ ����� − ��� < '��
��
�	���
 < 1  

Remark: We have showed here that:∀� ≥ 701: ����� − ��� < 1, and this relation was confirmed numerically 

for 1 ≤ � ≤ 700. So we have: ∀� ≥ 1  ����� − ��� < 1 

(iii)*By the assertion (ii) of corollary 9, we have: 

����� − ��� < 1 ⇒ ����� < ��� + 1 ⇒ 1 < É������ < 1 + 1�p�   
*The result follows by the squeeze theorem. 

(iv)*Consider, on [
�' , 1] for � ≥ 2 the continuous function  b�(.) = ����- − ��- − 1 

**We have, by the assertion (ii) of corollary 9: b� ��'� = ����
	" − ��

	" − 1 < 0 

**We have: b�(1) = ���� − �� − 1 > 0 (because � ≥ 2) 

*So, by the intermediate value theorem, ∃_� ∈] �' , 1[ such that: ����À
 − ��À
 = 1 

*_� is the sole real, in ] �' , 1[, having this property, because: �
�	Ê
�
Ê > 1 > !� (�
)!� (�
�	) ⇒ b��(.) = ����- ln(����) − ��- ln(��) > 0 ⇒ b� is strictly increasing in ] �' , 1[. 

*Suppose contrarily that ∃. ∈] �' , _�[ such that: ����- − ��- > 1 

*Because: ����
	" − ��

	" < 1, by the intermediate value theorem applied to the continuous function b�  on the interval 

[
�' , .], we have: ∃O ∈] �' , .[ such that b�(.) = ����� − ��� − 1 = 0 with O ≠ _�  

*But this is impossible, because _� is the sole real, in ] �' , 1[ such that ����À
 − ��À
 = 1 
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*So, ∀� ≥ 2∃! _� ∈] �' , 1[  ¿∀. ∈ [�' , _�[   ����- − ��- < 1����À
 − ��À
 = 1  

 

4. PROOF OF THE CRAMER AND THE CRAMER-GRANVILLE CONJECTURES 
Corollary10: We have: 

(i)(The Weak Cramér conjecture [19], [39]): ���� − �� = 8((ln(��)))', 

(i) (The Strong Cramer conjecture [5])limsup�→�� ��
�	 �
(!�(�
))"� = 1 

(iii)(Cramer-Granville conjecture [15])  limsup�→�� ��
�	 �
(!�(�
))"� = 2@ A , (Where C = 0.5772 … denotes the Euler-

Mascheroni constant) is not true. 

Proof: (of corollary 10) 

(i)*By corollary 8, we have: ∀� > 4  ���� − �� < (ln(��))' − ln(��) + 1 < (ln(��))' 

*So, using the Bachman-Landau symbol, we have:  ���� − �� = 8((ln(��)))' 

Remark:"limsup�→�� ��
�	 �
(!�(�
))"� = 1” means that: “the gaps between consecutive primes are always small, and it 

quantifies asymptotically how small they can be” [19]. 

Remark: According to Sinha [19], the error 8((ln(��))'is optimum and it cannot be lowered. 

(ii)*By corollary 8, we have: ∀� ≥ 5 ���� − �� < (ln(��))' + 1 − ln(��) < (ln(��))' 

*That is: 
�
�	 �
(!�(�
))" < 1 

*So: limsup�→�� ��
�	 �
(!�(�
))"� ≤ 1 

*Suppose contrarily that:  ∀q bijection:ℕ∗ → ℕ∗ ∃e > 0∀�∃� ≥ � (1 − e)9ln9�r(�)::' ≥ �r(�)�� − �r(�) 
*Let: �Ë = min (l� ≥ �, (1 − e)9ln9�r(�)::' ≥ �r(�)�� − �r(�) Ì) 

*We have: (1 − e)9ln9�r(�Í)::' ≥ �r(�Í)�� − �r(�Í) and (1 − e)9ln9�r(�Í �)::' < �r(�Í �)�� − �r(�Í �) 
Remark: if �Ë = min �l� ≥ �, (1 − e)9ln9�r(�)::' ≥ �r(�)�� − �r(�) Ì� = �, we have: ∀� ≤ � − 1 (1 − e)9ln9�r(�)::' < �r(�)�� − �r(�) 
*So: 1 − ϵ ≤ limË→��

�Ï(
Í¯	)�	 �Ï(
Í¯	)
�!���Ï(
Í¯	)��" = limË→��

�Ï(
Í)�	 �Ï(
Í)
�!���Ï(
Í)��" ≤ 1 − e 

*That is: limË→��
�Ï(
Í)�	 �Ï(
Í)

�!���Ï(
Í)��" = 1 − e 

* But I have deduced in [14] (See also [10]), from the Riemann Hypothesis, the twin primes conjecture which 

says that:∃Ð: ℕ∗ → ℕ∗ a bijection, such that:∀� ∈ ℕ∗ �Ñ(�)�� − �Ñ(�) = 2. So: lim�→�� �Ò(
)�	 �Ò(
)9!�9�Ò(
)::" = 0 

*So writing our absurd hypothesis, in particular for q = Ð,  we deduce that:1 − e = 0. 

*But this is impossible, because it implies (1 − e)9ln9�r(�Í)::' = 0 ≥ �r(�Í)�� − �r(�Í) > 0 

*So, our starting absurd hypothesis is false, 

* So its negation “∃q bijection:ℕ∗ → ℕ∗ ∀e > 0∃�∀� ≥ � 1 − e < �Ï(
)�	 �Ï(
)9!�9�Ï(
)::" < 1" is true. 

*That is: limsup�→�� ��
�	 �
(!�(�
))"� = 1 (limsup being the greatest adherent point) 

(iii)The Cramer-Granville is not true because: 2@ A = 1.1229 … > 1 = limsup�→�� ��
�	 �
(!�(�
))"�  by the assertion (ii) of 

corollary 11. 

Remark: (i) By the twin primes conjecture (See [14] and [10]) which says that:∃q: ℕ∗ → ℕ∗ a bijection, such 

that:∀� ∈ ℕ∗ �r(�)�� − �r(�) = 2, we have: liminf�→�� �
�	 �
(!�(�
))" = 0 (liminf being the smallest adherent value). 

(ii) In 1931, E.Westzynthius showed, in [22], that:  limsup�→��
�
�	 �
!� (�
) = +∞ . So: ∃q: ℕ∗ → ℕ∗ a bijection such 

that: lim�→�� �r(�)�� − �r(�) = +∞. 
 

 



 
[Ghanim et al., 7(8): August, 2020]  ISSN 2349-0292 

  Impact Factor 3.802 

http: // www.gjaets.com/                 © Global Journal of Advance Engineering Technology and Sciences 

 [23] 

REFERENCES 
1. Andrica, Dorin (1986) : Note on a conjecture in prime number theory. Studia univ. Babes-Bolyai Math. 

31(4), pp 44-48. 

2. Baker, R.C- Harman, G. (1996) : The difference between consecutive primes. Proc. Lon. Math. Soc., 

series 3, 72, pp261-280 
3. Baker, R.C- Harman, G.- Pintz, J. (2001) : The difference between consecutive primes. II. Proc. Lon. 

Math. Soc.  (3), 83, n°3, pp 532-562 

4. Cramér, Harald (1920) : On the distribution of primes. Proc. Camb. Phi. Soc. 20, pp 272-28 

5. Cramér, Harald (1936) : On the order of magnitude of the difference between consecutive prime 

numbers. Acta. Arithmetica. Vol 2, pp 23-46 

6. De La Vallée Poussin, Ch .J. G. N (1896): Recherches Analytiques, la theorie des nombres premiers; 

Ann. Soc. Scient. Bruxelles 20, pp 185-256 

7. Dusart, Pierre (1998) : Autour de la fonction qui compte le nombre des nombres premiers. Thèse 

présentée à l’université de Limoges sous la direction de Guy Robin. Available at : 

http://unilim.fr/laco/thèses/1998/T1998_01.pdf/ (Accessed on : August 14, 2020) 

8. Euclid (1966): Les éléments. T1 (livres I-VII), T2 (livres VIII-IX), T3 (livres X-XIII) in les œuvres 
d’Euclide the French translation of the Euclid Grec work by F.Peyrard. Blanchard. Paris. France. 

Available at: https://archive.org/details/lesoeuvresd’euclid03eucl/ (Accessed on: July 28, 2020)   

9. Firoozbakht, Farideh: talking about herself.                                    Available at: 

http://primepuzzles.net/thepuzzlers/Firoozbakht.htm/ (Accessed on August 17, 2020) 

10. Gensel, B. (2020): An elementary proof of the twin prime conjecture. Turkish Journal of analysis and 

number theory, Vol 8, n°3, pp 52-56 Available at: http://pubs.sciepub.com/tjant/8/3/1 (Accessed on 

August 21, 2020)  

11. Ghanim, Mohammed (2017): Confirmation of the Riemann Hypothesis. The GJAETS. India. In the April 

10, 2017 issue. Available at: www.gjaets.com/ (Accessed on July 23, 2020) 

12. Ghanim, Mohammed (2017): Confirmation of the irrationality of the Euler constant. The GJAETS. India. 

In the May 10, 2017 issue. Available at: www.gjaets.com/ (Accessed on July 23, 2020) 

13. Ghanim, Mohammed (2018): Confirmation of the Goldbach binary conjecture. The GJAETS. India. In 
the May 10, 2018 issue Available at: www.gjaets.com/ (Accessed on July 23, 2020) 

14. Ghanim, Mohammed (2018): Confirmation of the De Polignac and the twin prime conjectures. The 

GJAETS. India. In The July 10, 2018 issue. Available at: www.gjaets.com/ (Accessed on July 23, 2020) 

15. Granville, Andrew (1995): Harald Cramér and the distribution of prime numbers. Scandinavian actuarial 

Journal, Vol1, pp 12-28 Available at: 

http://Dartnouth.edu/~chance/chance_news/for_chance_news/Riemann/Cramer.pdf/ (Accessed on 

August 20, 2020) 

16. Hadamard, Jacques Salomon (1896) : Sur la distribution des zéros de la fonction  Ó(�) est ses 

conséquences arithmétiques. Bull. Soc. Math. France 24, pp199-220  

17. Kourbatov, Alexei. "Prime Gaps: Firoozbakht Conjecture". Available at:  

http://javascripter.net/math/primes/firoozbakhtconjecture.htm/ (Accessed on August 14, 2020) 
18. Kourbatov, Alexei (2015): Verification of the Firoozbakht conjecture for primes up to four quintillion. 

International mathematical forum, Vol 10, n°6.  Available at: http://dx.doi.org/10.12988/imf. 2015.5322/ 

and: http://arxiv.org/1503.01744/ (Accessed on August 14, 2020) 

19. Sinha, Niloptal Kanti (2018): On new property of primes that leads to a generalization of Cramer’s 

conjecture. pp 1-10 Available at: http://arxiv.org/pdf/1010.1399.pdf/ (Accessed on July 28, 2020) 

20. Ribenboim, Paulo (2004): The little book of bigger primes. Second edition. p185. New York. Springer. 

Available at: http://archive.org/details/littlebookbigger00ribe_610/page/n209/mode/2up/ (Accessed on 

August 14, 2020)  

21. Rivera, Carlos: Conjecture 30: the Firoozbakht conjecture” Available at: 

http://primepuzzles.net/conjectures/conj_030.htm/ (Accessed on August 14, 2020) 

22. Westzynthius, E (1931): Uber die verteilung der zahlen die zu der n ersten primzahlen teilerfremd Sind. 
Commentationes physico-mathematicae helsingsfors (in German), 5, pp 1-3 

23. Wikipedia: the greatest common divisor Available at:  

http://en.wikipedia.org/wiki/Greatest_common_divisor/ (Accessed on July 28, 2020)  

24. Wikipedia: the prime number theorem Available at:  http://en.wikipedia.org/wiki/primenumbertheorem/ 

(Accessed on July 28, 2020) 



 
[Ghanim et al., 7(8): August, 2020]  ISSN 2349-0292 

  Impact Factor 3.802 

http: // www.gjaets.com/                 © Global Journal of Advance Engineering Technology and Sciences 

 [24] 

25. Wikipedia: the fundamental theorem of arithmetic. Available at:  

http://en.wikipedia.org/wiki/fundamentaltheoremofarithmetic/ (Accessed on August 14, 2020) 

26. Wikipedia: the Firoozbakht conjecture. Available at:  

http://en.wikipedia.org/wiki/Firoozbakht%27s_conjecture/ (Accessed on July 28, 2020) 

27. Wikipedia: The intermediate value theorem Available at: http://en.wikipedia.org/wiki/the 

intermediate_value_theorem/ (Accessed on August 14, 2020) 

28. Wikipedia: the infimum and the supremum Available at: 

http://en.wikipedia.org/wiki/Infimum_and_supremum/ (Accessed on August 14, 2020) 

29. Wikipedia: the Taylor formula with Lagrange rest Available at: 

http://en.wikipedia.org/wiki/Taylorformula/  (Accessed on August 14, 2020 
30. Wikipedia: The L’Hôpital rule. Available at: http://en.wikipedia.org/wiki/L’Hopitalrule/ (Accessed on 

August 14, 2020) 

31. Wikipedia: increasing and decreasing functions Available at: 

http://en.wikipedia.org/wiki/increasinganddecreasingfunctions/ (Accessed on August 14, 2020) 

32. Wikipedia: equivalent sequences Available at: http://en.wikipedia.org/wiki/equivalentsequences/ 

(Accessed on August 14, 2020) 

33. Wikipedia: Continuity Available at: http://en.wikipedia.org/wiki/continuity/ (Accessed on August 14, 

2020)  

34. Wikipedia: The Bolzano-Weierstrass theorem Available at: 

http://en.wikipedia.org/wiki/Bolzanoweierstrasstheorem/ (Accessed on August 14, 2020)  

35. Wikipedia: connected spaces Available at: http://en.wikipedia.org/wiki/coonectedspaces/ (Accessed on 
August 14, 2020)  

36. Wikipedia: Bachman-Landau symbol Available at: 

http://en.wikipedia.org/wiki/Bachman_landau_symbol/ (Accessed on August 22, 2020) 

37. Wikipedia: Bachman-Landau symbol Available at: http://en.wikipedia.org/wiki/squeezetheorem/ 

(Accessed on August 23, 2020) 

38. Wikipedia: The Andrica conjecture Available at: http://en.wikipedia.org/wiki/Andricaconjecture/ 

(Accessed on August 23, 2020) 

39. Wikipedia: The Cramér conjecture Available at: http://en.wikipedia.org/wiki/Cramérconjecture/  

(Accessed on August 23, 2020) 

 


