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ABSTRACT: 
In data mining, association rule learning is a popular and well researched method for discovering interesting 

relations between variables in large databases. It is intended to identify strong rules discovered in databases using 

different measures of interestingness. Introduced association rules for discovering regularities between products in 

large-scale transaction data recorded by point-of-sale systems in supermarkets In this paper we present a novel Q-

baesd FP tree technique that greatly reduces the need to traverse FP-trees and Q based  FP tree, thus obtaining 

significantly improved performance for FP-tree based algorithms. The technique works especially well for sparse 

datasets. We then present a new algorithm which use the Q FP-tree data structure in combination with the FP- 

Experimental results show that the new algorithm outperform other algorithm in not only the speed of algorithms, 

but also their CPU consumption and their scalability. 
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1. INTRODUCTION  

The problem for association rules mining from a data 

stream has been addressed by many authors but there are 

several issues (as highlighted in previous sections) that 

hang about to be addressed. In this part we address the 

literature review of data stream mining. The work in this 

domain can be effectively classified into three different 

domains namely, exact methods for Frequent Item set 

Mining, Approximate Methods and Memory Management 

techniques adopted for data stream mining [1,2].  
      Let I= {i1, i2, in} be a set of items, we call x and   I an 

item set, and we call X a k-item set if the cardinality of item 

set X is k. Let database T be a multi set of subsets of I, and 

let support(X) be the percentage of item set Y in T such that 

X U Y .Informally, the support of an item set procedures 

how often X occurs in the database. If support(X) + minus , 

we say that X is a frequent item set , and we denote the set 

of all frequent item sets by FI.A closed frequent item set is 

a frequent item set X such that there exists no superset of X 

with the same support count as X. If X is frequent and no 

superset of X is frequent, we 
Say that X is a maximal frequent item set, and we denote 

the set of all maximal frequent item sets by MFI. [7] 
This is the inherent cost of candidate generation, 

no matter what implementation technique is applied. It is 

tedious to repeatedly scan the database and check a large 

set of candidates by pattern matching, which is especially 

true for mining long patterns. Can one develop a method 

that may avoid candidate generation-and-test and utilize 

some novel data structures to reduce the cost in frequent-

pattern mining? This is the motivation of this study [6]. 

 

 

2. RELATED WORK 

In the aforementioned FP-growth method [2], a novel data 

structure, the FP-tree (Frequent Pattern tree) is used. The 

FP-tree is a compact data structure for storing all necessary 

information about frequent item sets in a database. Every 

branch of the FP-tree represents a frequent item set, and the 

nodes along the branch are ordered decreasingly by the 

frequency of the corresponding item, with leaves 

representing the least frequent items. Each node in the FP-

tree has three fields: item-name, count and node-link, when 

item-name registers which item this node represents, count 

registers the number of transactions represented by the 

portion for the path reaching this node, and node-link links 

to the next node in the FP-tree carrying the same item-name, 

or null if there is none. The FP-tree has a header table 

associated with it. Single items are stored in the header 

table in decreasing order of frequency. Each entry in the 

header table consists of two fields, item-name and head of 

node-link (a pointer pointing to the first node in the FP-tree 

carrying the item-name). Compared with Apriority [1] and 

its variants which need several database scans, the FP-

growth method only needs two database scans when 

mining all frequent item sets. In the first scan, all frequent 

items are found. The second scan constructs the first FPtree 

which contains all frequency information of the original 

dataset. Mining the database then becomes mining the FP-

tree. Figure 1(a) shows a database example. After the first 

scan, all frequent items are inserted in the header table of 

an initial FP-tree. Figure 1(b) shows the first FP-tree 

constructed from the second scan. The FP-growth method 

relies on the following principle: if X and Y are two item 

sets, the support of item set X UY in the database is exactly 
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that of Y in the restriction of the database to those 

transactions containing X. This restriction of the database 

is called the conditional pattern base of X. Given an item in 

the header table, the growth method constructs a new FP-

tree corresponding to the frequency information in the sub-

dataset of only those transactions that contain the given 

item. The complete set of frequent item sets is generated 

from all single path FP-trees [5]. UFP-growth algorithm 

was extended from the FPgrowth algorithm which is one of 

the most well-known pattern mining algorithms in 

deterministic databases. Similar to the traditional FP-

growth algorithm, UFP-growth algorithm also firstly builds 

an index tree, called UFP-tree to store all information of the 

uncertain database. Then,based on the UFP-tree, the 

algorithm recursively builds conditional subtrees and finds 

expected support-based frequent itemsets. Figure 1 when 

min esup=0.25 

 

                     

Figure 1: FP-Tree 

 

 

                   Figure 2: Prefix paths for Item 

3. PROPOSED WORK TO BE PLANED 

Algorithm of WS with Array based technique: Improved 

FP-tree (IFP-tree) is similar with FP-tree and each node in 

IFP-tree consists of four fields: item, count, ahead and next. 

Where item registers which item this node represents, count 

registers the number of transactions represented by the 

portion of the path reaching this node, ahead links to the 

left child or the parent of the node, and next links to the 

right brother of the node or the next node in IFP-tree 

carrying the same item, or null if there is none. We also 

define two arrays: nodecnt and link, and link [item] 

registers a pointer which points to the first node in the IFP-

tree carrying this item, nodecnt [item] registers the support 

count sum of those nodes in IFP-tree which carry the same 

item. In comparison with FP-tree, IFP-tree doesn’t contain 

the path from root to leaf-node, contains fewer pointers 

than FP-tree in mining process, and so may greatly save 

cost in memory. The construction method of IFP-tree is 

similar with that of FP-tree, the difference from FP-tree 

exits in the process of Inserting frequent item sets in each 

transaction into IFP-tree. In this paper, we don’t adopt the 

method of recursively performing the procedure, insert tree 

([p|P], t), but employ a dynamic pointer to complete it. 

3.1 The algorithm constructing IFP-tree as follows: 

Procedure FP-tree constructs (T, min_sup) 

1) Scan T and count the support of each item, derive a 

frequent item set (F) and a list (L) of frequent items, 

in which items are ordered in frequency-descending order; 

2) The root of IFP-tree is created and labeled with “root”; 

3) For each transaction t UT do 

{ 

Frequent item set It= t UF, in which items are listed to St 

according to the order of L, defines a dynamic 

pointer (p_current) which points to root. 

Procedure WSFP-tree constructs (T, min_sup) 

1) Scan T and count the support of each item, derive a 

frequent item set (F) and a list (L) of frequent items, 

in which items are in sequence of occurrence form; 

2) The root of IFP-tree is created and labeled with “root”; 

3) For each transaction t UT do 

{ 

Frequent item set It= t UF, in which items are listed to St 

according to the order of occurrence  L, defines a dynamic 

pointer (p_current) which points to root. 

4}Traverse IFP-tree in a root-first order and transfer the 

pointers of ahead and next, count the sum of nodes’ support 

carrying the same item and then list  together. For example, 

let transaction database T be illustrated by TABLE I, and 

the minimum support (min_sup) be 4, then  

4. THE EXPERIMENTAL RESULT 

The experiments were conducted on 2.4 GHz Pentium with 

512 MB of memory running Microsoft Windows XP. All 

codes were compiled using Matlab 7.10. We used Connect-

4 downloaded form a website to test and compared FP tree 

with WSFP tree, which is a real and dense dataset. Fig 8 

and Fig 9 shows the experimental results. Here we can see 

that ABWSFP outperforms WSFP for high levels of 

minimum support, but it is slow for very low levels.  
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5. CONCLUSIONS 

In this paper, an efficient algorithm, called mining frequent 

pattern, for mining maximal frequent patterns based on 

improved FP-tree is proposed, the algorithm improves the 

conventional FP-tree and by introducing the concept of the 

array sub-tree, avoids generating the maximal frequent 

candidate patterns in mining process and therefore greatly 

reduces the memory consume, it also uses an array-based 

technique to reduce the traverse time to the improved FP-

tree. Therefore it greatly improves the mining efficiency in 

time and space scalability. Experimental results show that 

it possesses high mining efficiency and scalability. 
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