
Mangal, 2(4): April, 2015 ISSN 2349-0292

http://www.gjaets.com (C) Global Journal of Advance Engineering Technology and Sciences

5-7

Global Journal of Advanced Engineering Technologies and Sciences
MINING THE DATA THROUGH FCFS TECHNIQUE USING MATLAB

IMPLEMENTATION

 Akhilesh Dubey, Priyanka Mangal

Lecturer CSE,

Department of Computer Science

ABSTRACT:
In data mining, association rule learning is a popular and well researched method for discovering interesting

relations between variables in large databases. It is intended to identify strong rules discovered in databases using

different measures of interestingness. Introduced association rules for discovering regularities between products in

large-scale transaction data recorded by point-of-sale systems in supermarkets In this paper we present a novel Q-

baesd FP tree technique that greatly reduces the need to traverse FP-trees and Q based FP tree, thus obtaining

significantly improved performance for FP-tree based algorithms. The technique works especially well for sparse

datasets. We then present a new algorithm which use the Q FP-tree data structure in combination with the FP-

Experimental results show that the new algorithm outperform other algorithm in not only the speed of algorithms,

but also their CPU consumption and their scalability.

Keyword: FP-Tree, WSFP –Tree, Frequent Patterns, Array Technique

1. INTRODUCTION

The problem for association rules mining from a data

stream has been addressed by many authors but there are

several issues (as highlighted in previous sections) that

hang about to be addressed. In this part we address the

literature review of data stream mining. The work in this

domain can be effectively classified into three different

domains namely, exact methods for Frequent Item set

Mining, Approximate Methods and Memory Management

techniques adopted for data stream mining [1,2].
 Let I= {i1, i2, in} be a set of items, we call x and I an

item set, and we call X a k-item set if the cardinality of item

set X is k. Let database T be a multi set of subsets of I, and

let support(X) be the percentage of item set Y in T such that

X U Y .Informally, the support of an item set procedures

how often X occurs in the database. If support(X) + minus ,

we say that X is a frequent item set , and we denote the set

of all frequent item sets by FI.A closed frequent item set is

a frequent item set X such that there exists no superset of X

with the same support count as X. If X is frequent and no

superset of X is frequent, we
Say that X is a maximal frequent item set, and we denote

the set of all maximal frequent item sets by MFI. [7]
This is the inherent cost of candidate generation,

no matter what implementation technique is applied. It is

tedious to repeatedly scan the database and check a large

set of candidates by pattern matching, which is especially

true for mining long patterns. Can one develop a method

that may avoid candidate generation-and-test and utilize

some novel data structures to reduce the cost in frequent-

pattern mining? This is the motivation of this study [6].

2. RELATED WORK

In the aforementioned FP-growth method [2], a novel data

structure, the FP-tree (Frequent Pattern tree) is used. The

FP-tree is a compact data structure for storing all necessary

information about frequent item sets in a database. Every

branch of the FP-tree represents a frequent item set, and the

nodes along the branch are ordered decreasingly by the

frequency of the corresponding item, with leaves

representing the least frequent items. Each node in the FP-

tree has three fields: item-name, count and node-link, when

item-name registers which item this node represents, count

registers the number of transactions represented by the

portion for the path reaching this node, and node-link links

to the next node in the FP-tree carrying the same item-name,

or null if there is none. The FP-tree has a header table

associated with it. Single items are stored in the header

table in decreasing order of frequency. Each entry in the

header table consists of two fields, item-name and head of

node-link (a pointer pointing to the first node in the FP-tree

carrying the item-name). Compared with Apriority [1] and

its variants which need several database scans, the FP-

growth method only needs two database scans when

mining all frequent item sets. In the first scan, all frequent

items are found. The second scan constructs the first FPtree

which contains all frequency information of the original

dataset. Mining the database then becomes mining the FP-

tree. Figure 1(a) shows a database example. After the first

scan, all frequent items are inserted in the header table of

an initial FP-tree. Figure 1(b) shows the first FP-tree

constructed from the second scan. The FP-growth method

relies on the following principle: if X and Y are two item

sets, the support of item set X UY in the database is exactly

http://www.gjaets.com/
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Point-of-sale

Mangal, 2(4): April, 2015 ISSN 2349-0292

http://www.gjaets.com (C) Global Journal of Advance Engineering Technology and Sciences

5-7

that of Y in the restriction of the database to those

transactions containing X. This restriction of the database

is called the conditional pattern base of X. Given an item in

the header table, the growth method constructs a new FP-

tree corresponding to the frequency information in the sub-

dataset of only those transactions that contain the given

item. The complete set of frequent item sets is generated

from all single path FP-trees [5]. UFP-growth algorithm

was extended from the FPgrowth algorithm which is one of

the most well-known pattern mining algorithms in

deterministic databases. Similar to the traditional FP-

growth algorithm, UFP-growth algorithm also firstly builds

an index tree, called UFP-tree to store all information of the

uncertain database. Then,based on the UFP-tree, the

algorithm recursively builds conditional subtrees and finds

expected support-based frequent itemsets. Figure 1 when

min esup=0.25

Figure 1: FP-Tree

 Figure 2: Prefix paths for Item

3. PROPOSED WORK TO BE PLANED

Algorithm of WS with Array based technique: Improved

FP-tree (IFP-tree) is similar with FP-tree and each node in

IFP-tree consists of four fields: item, count, ahead and next.

Where item registers which item this node represents, count

registers the number of transactions represented by the

portion of the path reaching this node, ahead links to the

left child or the parent of the node, and next links to the

right brother of the node or the next node in IFP-tree

carrying the same item, or null if there is none. We also

define two arrays: nodecnt and link, and link [item]

registers a pointer which points to the first node in the IFP-

tree carrying this item, nodecnt [item] registers the support

count sum of those nodes in IFP-tree which carry the same

item. In comparison with FP-tree, IFP-tree doesn’t contain

the path from root to leaf-node, contains fewer pointers

than FP-tree in mining process, and so may greatly save

cost in memory. The construction method of IFP-tree is

similar with that of FP-tree, the difference from FP-tree

exits in the process of Inserting frequent item sets in each

transaction into IFP-tree. In this paper, we don’t adopt the

method of recursively performing the procedure, insert tree

([p|P], t), but employ a dynamic pointer to complete it.

3.1 The algorithm constructing IFP-tree as follows:

Procedure FP-tree constructs (T, min_sup)

1) Scan T and count the support of each item, derive a

frequent item set (F) and a list (L) of frequent items,

in which items are ordered in frequency-descending order;

2) The root of IFP-tree is created and labeled with “root”;

3) For each transaction t UT do

{

Frequent item set It= t UF, in which items are listed to St

according to the order of L, defines a dynamic

pointer (p_current) which points to root.

Procedure WSFP-tree constructs (T, min_sup)

1) Scan T and count the support of each item, derive a

frequent item set (F) and a list (L) of frequent items,

in which items are in sequence of occurrence form;

2) The root of IFP-tree is created and labeled with “root”;

3) For each transaction t UT do

{

Frequent item set It= t UF, in which items are listed to St

according to the order of occurrence L, defines a dynamic

pointer (p_current) which points to root.

4}Traverse IFP-tree in a root-first order and transfer the

pointers of ahead and next, count the sum of nodes’ support

carrying the same item and then list together. For example,

let transaction database T be illustrated by TABLE I, and

the minimum support (min_sup) be 4, then

4. THE EXPERIMENTAL RESULT

The experiments were conducted on 2.4 GHz Pentium with

512 MB of memory running Microsoft Windows XP. All

codes were compiled using Matlab 7.10. We used Connect-

4 downloaded form a website to test and compared FP tree

with WSFP tree, which is a real and dense dataset. Fig 8

and Fig 9 shows the experimental results. Here we can see

that ABWSFP outperforms WSFP for high levels of

minimum support, but it is slow for very low levels.

http://www.gjaets.com/

Mangal, 2(4): April, 2015 ISSN 2349-0292

http://www.gjaets.com (C) Global Journal of Advance Engineering Technology and Sciences

5-7

5. CONCLUSIONS

In this paper, an efficient algorithm, called mining frequent

pattern, for mining maximal frequent patterns based on

improved FP-tree is proposed, the algorithm improves the

conventional FP-tree and by introducing the concept of the

array sub-tree, avoids generating the maximal frequent

candidate patterns in mining process and therefore greatly

reduces the memory consume, it also uses an array-based

technique to reduce the traverse time to the improved FP-

tree. Therefore it greatly improves the mining efficiency in

time and space scalability. Experimental results show that

it possesses high mining efficiency and scalability.

REFERENCES

I. [1] Karun Verma,” a better approach to mine

frequent item sets using apriori and fp-tree

approach”2011.

II. [2] Implementation of array based technique to

improvise representation of fp-tree using iafp-

max algorithm”, Journal of Global Research in

Computer Science (JGRCS) 2011.

III. [3] Dr.S.S Mantha,”Maximal Frequent Item set”,

International Journal of Computer Applications

(0975 – 8887) Volume 10– No.3, November

2010.

IV. [4] Sumathi k“an array based approach for

mining maximal frequent itemsets

“computational intelligence and computing

research (iccic), 2010 ieee international

conference on ICCIC.

V. [5] R.Divya Survey on AIS, Apriori and FP-Tree

algorithms International Journal of Computer

Science and Management Research Vol 1 Issue

2 September 2012

VI. [6] Huanglin Zeng An Improved Algorithm of

FP - tree Growth Based on Mapping Modeling

(ICCASM 2010) V4-463

VII. [7] Vaibhav Kant Singh and Vinay Kumar Singh

“Minimizing Space Time Complexity by

RSTDB a new method for Frequent Pattern

Mining” To be appeared in Proceeding of the

First International Conference on Intelligent

Human Computer Interaction ,Allahabad,2009.

VIII. [8]Christie I. Ezeife and Min Chen Lecture Notes

in Computer Science, , Volume 3129, Advances

in Web-Age Information Management. 2004

IX. [9] Han, J., J, Pei, Y, Yin and R, Mao, 2004,

Mining frequent patterns without candidate

generations.

X. [10]Han, J., J, Pei, Y, Yin and R, Mao, 2004,

Mining frequent patterns without n improved

frequent pattern growth method for mining

association rule.

XI. [11] Burdick Doug, Calimlim Manuel, and

Gehrke Johannes, “A Maximal Frequent Item set

Algorithm for Transactional Database”,

Proceedings of the 17th International Conference

on Data Engineering, Heidelberg,Germany, pp .

443-452, April 2001.

XII. [12] J Han, J Pei and Y Yin, “Mining frequent

patterns without candidate generation”,

Proceedings of Special Interest Group on

Management of Data, Dallas, pp. 1-12, May 2000.

XIII. [13] Agrawal R, Srikant S, Fast algorithms for

mining association rules. In VLDB', 487-499,

1994.

http://www.gjaets.com/
http://dl.acm.org/citation.cfm?id=1930552.1930870
http://dl.acm.org/citation.cfm?id=1930552.1930870

