
Keerthika, 2(3): March, 2015 ISSN 2349-0292

http://www.gjaets.com (C) Global Journal of Advance Engineering Technology and Sciences

14-18

Global Journal of Advanced Engineering Technologies and Sciences

AN IMPROVED FAULT TOLERANT SCHEDULING

ALGORITHM FOR GRID ENVIRONMENT
1Keerthika P, 2Suresh P

1Assistant Professor (Senior Grade), Department of CSE,
2Assistant Professor (Senior Grade), Department of IT,

Kongu Engineering College, Perundurai, Erode, Tamilnadu, India

keerthikame@gmail.com

Abstract

Grid computing is becoming popular due to the stupendous growth in the internet, bringing the resources together

which makes the user to get fast solutions for the large scale problems. This enables sharing, selection and aggregation

of a wide variety of geographically distributed resources. As size of the applications grow, more usage of resources

for longer periods of time, may lead to increasing number of resource failures. When failures occur, the execution of

the jobs that is assigned to the failed resources will be affected. So, fault tolerance is necessary in such cases. To

overcome the failure, a scheduling algorithm is proposed that depends on a new factor called scheduling indicator in

selecting the resources. This factor comprises of the response time and the fault rate of grid resources. The fault rate

is based on the success and the failure of job execution. Whenever a grid scheduler has jobs to schedule on grid

resources, it uses the scheduling indicator to generate the scheduling decisions. The resource with minimum

scheduling indicator value receives the job.

I. INTRODUCTION
In today’s pervasive world, the explosive grid

computing environments have become significant that

they are often referred to be the world’s single and

most powerful computer solutions. Previously, the

resources were available worldwide in every system.

Due to the massive growth of Internet and advent of

grid computing, the resources are brought together to

make the user, get fast solutions for their jobs. Grid

computing is defined as the controlled and coordinated

resource sharing and problem solving in dynamic,

multi - institutional virtual organizations. It involves

the actual networking services and connections of a

potentially unlimited number of computing devices

within a grid. Grid computing strives for an ideal

Central Processing Unit (CPU) cycles and storage of

millions of systems across worldwide users [1]. This

enables sharing, selection and aggregation of a wide

variety of geographically distributed resources. This

includes supercomputers, storage systems, data

sources and specialized devices used for solving large

scale resource intensive problems in science,

engineering and commerce. These problems require a

great number of computer processing cycles or the

need to process large amount of data. The size of a grid

may vary from being small, confined to a network of

computer workstations within a corporation to a

worldwide network.

Computational grids are the solution for all

these problems. They offer a convenient way to

connect many devices (e.g., processors, memory and

Input & Output (I/O) - devices) so that end users are

able to combine the computational power of all

devices for a certain amount of time. For example, if a

user needs to make some CPU consuming

calculations, the user could occasionally borrow CPU-

time from a grid with a much lower cost than borrow

the time from a super computer. A grid could be

created in all environments where end users have a

computer with memory and CPU. Data grid provides

an infrastructure to support data storage, data

discovery, data handling, data publication and data

manipulation of large volume of data actually stored

in various heterogeneous databases and file systems

[2]. It deals with the controlled sharing and

management of large amounts of distributed data.

Grid scheduling is defined as the process of

making scheduling decisions involving resources over

multiple administrative domains. The scheduling

system must consider the scheduling of jobs involving

the mapping of ‘n’ jobs to ‘m’ resources. Scheduling

is done by using software called job scheduler.

Complexity of grids originates from strong variations

in the grid availability and an increase in the

probability of resources to fail than traditional parallel

and distributed systems.

As applications grow, more usage of

resources for longer periods of time may lead to

increase in number of resource failures. When failures

occur, the execution of the jobs assigned to the failed

resources will be affected. So, a fault tolerant service

http://www.gjaets.com/

Keerthika, 2(3): March, 2015 ISSN 2349-0292

http://www.gjaets.com (C) Global Journal of Advance Engineering Technology and Sciences

14-18

is important in grid environment. Fault tolerance is the

ability to preserve the delivery of expected services

despite failures within the grid itself. Faults occur

when a grid resource is unable to complete the

assigned job. Faults occur due to resource failure, job

failure or network failure. The resource failure is

considered in this work. The jobs submitted by the

user are executed by the computational grid by

allocating them to the resources with Quality of

Service (QoS) requirements. Fig.1 shows the basic

grid scheduling model.

Fig.1 Grid Scheduling Model

A centralized broker is the single point for the

whole infrastructure and manages directly the resource

manager interfaces that interact directly with the local

resource managers. All the users submit the tasks to

the centralized broker. Each resource differs from

other resources by many ways that includes number of

processing elements, processing speed, internal

scheduling policy and its load factor etc. Similarly

each job differs from other jobs by execution time,

deadline, time zone etc.

Fault tolerant mechanisms are needed to hide

the occurrence of faults, or the sudden unavailability

of resources. Although scheduling and fault tolerance

have been traditionally considered independently from

each other, there is a strong correlation between them.

As a matter of fact, each time a fault-tolerance action

must be performed.

II. RELATED WORKS
Fault tolerant scheduling is an important

issue for computational grid systems, as grids typically

consist of strongly varying and geographically

distributed resources.

The problems by combining the checkpoint

replication with Minimum Time To Release (MTTR)

job scheduling algorithm and fault index is addressed

by [4]. Time to release includes the service time of the

job, waiting time in the queue, transfer time of input

and output data to and from the resource. MTTR

algorithm minimizes the time to release by selecting a

computational resource based on job requirements, job

characteristics and hardware features of the resources.

When making scheduling decisions, the scheduler uses

the fault index and the response time of resources. It

sets the job checkpoints based on the resource failure

rate. A critical aspect for an automatic recovery is the

availability of checkpoint files. A strategy to increase

the availability of checkpoints is replication.

An adaptive fault tolerant job scheduling

strategy for economy based grids is proposed in [5].

The proposed strategy maintains a fault index of grid

resources. The fault tolerant schedule manager

maintains fault history about grid resources and

updates Fault Index (FI) of a grid resource by

receiving requests from the broker. It dynamically

updates the fault index based on successful or

unsuccessful completion of an assigned task.

Whenever a grid resource broker has tasks to schedule

on grid resources, it makes use of the fault index from

the fault tolerant schedule manager in addition to using

a time optimization heuristic. FI is not a suitable

indicator to represent the resource failure history as it

cannot be decremented below a certain limit. FI of a

grid resource is incremented every time the resource

does not complete the assigned job and is decremented

whenever the resource completes the assigned job

successfully. If the fault index is zero, then the

resource with the minimum response time is selected

regardless of its failure history. This results in

selecting resources that may have higher tendency to

fail.

 A Failure Detection Service (FDS)

mechanism and a flexible failure handling framework

is proposed in [6]. The FDS enables the detection of

both task crashes and user-defined exceptions. The

Grid-WFS is built on top of FDS, which allows users

to achieve failure recovery in a variety of ways

depending on the requirements and constraints of their

applications. The resources are modeled based on the

system reliability. Reliability of a grid computing

resource is measured by mean time to failure (MTTF),

the average time that the grid resource operates

without failure. Mean time to repair (MTTR) is the

average time it takes to repair the Grid computing

resource after failure. The MTTR measures the

downtime of the computing resource.

 Various fault recovery mechanisms

such as checkpointing, replication and rescheduling

are discussed in [7]. Taking checkpoints is the process

http://www.gjaets.com/

Keerthika, 2(3): March, 2015 ISSN 2349-0292

http://www.gjaets.com (C) Global Journal of Advance Engineering Technology and Sciences

14-18

of periodically saving the state of a running process to

durable storage. This allows a process that fails to be

restarted from the point its state was last saved, or its

checkpoint on a different resource. Replication:

Replication means maintaining a sufficient number of

replicas, or copies, of a process executing in parallel

on different resources so that at least one replica

succeeds.

 In [8], it is described that the fault tolerance

is an important property in order to achieve reliability.

Reliability indicates that a system can run

continuously without failure. A highly reliable system

is the one that continues to work without any

interruption over a relatively long period of time. The

fault tolerance is closely related to Mean Time to

Failure (MTTF) and Mean Time between Failures

(MTBF). MTTF is the average time the system

operates until a failure occurs, whereas the MTBF is

the average time between two consecutive failures.

The difference between the two is due to the time

needed to repair the system following the first failure.

Denoting the Mean Time to Repair by MTTR, the

MBTF can be obtained as MTBF=MTTF + MTTR.

 A check pointing mechanism is proposed in

[9] to achieve fault tolerance. The check pointing

process periodically saves the state of a process

running on a computing resource so that, in the event

of resource failure, it can resume on a different

resource. If any resource failure happens, it invokes

the necessary replicas in order to meet the user

application reliability requirements.

 In our previous work [10], we have proposed

an efficient fault tolerant scheduling algorithm

(FTMM) which is based on data transfer time and

failure rate. System performance is also achieved by

reducing the idle time of the resources and distributing

the unmapped tasks equally among the available

resources. A scheduling strategy that considers user

deadline and communication time for data intensive

tasks with reduced makespan, high hit rate and

reduced communication overhead is introduced in

[11]. This strategy does not consider the occurrence of

resource failure.

 A Prioritized user demand algorithm is

proposed in [12] that considers user deadline for

allocating jobs to different heterogeneous resources

from different administrative domains. It produces

better makespan and more user satisfaction but data

requirement is not considered. While scheduling the

jobs, failure rate is not considered. So the scheduled

jobs may be failed during execution.

 In the existing system, the grid scheduler

schedules the jobs to the resources according to the

resource response time but the resource failure history

is not considered when allocating them. This results in

selecting resources that may have higher tendency to

fail.

The main objective is to design a fault tolerant

scheduling system that schedules the resources and

selects the resource which has the lowest tendency to

fail. It depends on a new factor called scheduling

indicator when selecting the resources. This factor

comprises of the response time and the fault rate of

grid resources. Whenever a grid scheduler has jobs to

schedule on grid resources, it uses the scheduling

indicator to generate the scheduling decisions. The

scheduling algorithm selects the resources that have

the lower response time and the lower fault rate (i.e)

resource with minimum scheduling indicator value.

III. MATERIALS AND METHODS

 Proposed Methodology
The proposed fault tolerant scheduling algorithm

depends on a new factor called scheduling indicator

when selecting the resources. This factor comprises of

the response time and the fault rate of grid resources.

To calculate the fault rate, two parameters Number of

failure (Nf) and Number of success (Ns) are used.

When a resource fails to complete a job, the value of

Nf is incremented by 1. Otherwise, the value of Ns is

incremented by 1. The response time is the summation

of the job transmission time from the scheduler to the

resource on which the job will be executed, the job

execution time on that resource and the transmission

time of job’s execution results from the recourse to the

scheduler.

 Based on the scheduling indicator value, the

scheduler creates a two-dimensional matrix named

Scheduling Indicator (SI) matrix. Each entry in the

matrix represents the scheduling indicator of each job

for each suitable resource in the grid. Finally, each row

in the SI matrix is sorted in an ascending order

according to the scheduling indicator of each resource.

The job is submitted to the resource with minimum

scheduling indicator value. Whenever a grid scheduler

has jobs to schedule on grid resources, it uses the

scheduling indicator value to generate the scheduling

decisions.

 The proposed scheduling algorithm has

maximized the throughput and minimized the

makespan of the system. The throughput of the system

is the number of jobs executed per unit time and the

makespan is the time difference between the start and

finish of a sequence of jobs. Job Information includes

length of the job, input file size, output file size and

bandwidth. Resource information includes its speed,

number of success and failures. Based the

requirement, 'm' number of resources and 'n' number

of jobs are created.The scheduling indicator combines

http://www.gjaets.com/

Keerthika, 2(3): March, 2015 ISSN 2349-0292

http://www.gjaets.com (C) Global Journal of Advance Engineering Technology and Sciences

14-18

the response time of the resource and the fault rate of

that resource.

 Fault rate is manipulated using two

parameters Nf (Number of failures) and Ns (Number of

successes). Nf is the number of times the resource had

failed in executing the job assigned. Ns is the number

of times the resource had executed the job

successfully. The fault rate Pfj calculation is performed

using the formula specified in the Equation (1).

𝑃𝑓𝑖
=

𝑁𝑓

𝑁𝑠+𝑁𝑓
 (1)

 Each time a resource fails to complete a job, the

value of Nf is increased by 1. Otherwise, the value of Ns is

increased by 1. The value of Pfj is used by the scheduler

when taking scheduling decisions. The most reliable
resource will be the resource with the minimum value of Pfj.

 The response time is the summation of the job

transmission time from the scheduler to the resource on

which the job will be executed, the job execution time on
that resource and the transmission time of job’s execution

results from the recourse to the scheduler. The response time

Tij of a resource j for a job i is defined in the Equation (2).

 𝑇𝑖𝑗 = Ʈ𝑟𝑗 + Ʈ𝑒𝑗 + Ʈ𝑟𝑟 (2)

where Ʈ𝑟𝑗 is the job’s transmission time from

the scheduler to the resource j, Ʈ𝑒𝑗 is the job’s

execution time on the resource j and Ʈ𝑟𝑟 is the time

for transferring results from the resource j to the

scheduler. Ʈ𝑟𝑗 can be defined in the Equation (3).

𝑇𝑟𝑗 =
𝐾𝑖

𝐵𝑗
 (3)

where Ki is the input file size of the job i and

Bj is the bandwidth between the grid scheduler and the

resource j on which the job i can be executed. Ʈej is be

defined in the Equation (4).

𝑇𝑒𝑗 =
𝐿𝑖

𝑅𝑆𝑗
 (4)

where Li is the length of the job i in Million

Instructions (MI) and Rsj is the speed of the resource j

in Million Instructions Per Second (MIPS). The value

of Ʈrr depends on the size of results obtained after

executing the job is defined by the Equation (5).

𝑇𝑟𝑟 =
𝐾𝑖𝑟

𝐵𝑗
 (5)

where Kir is the size of the output file

obtained after executing job i.

Based on the scheduling indicator value, the

scheduler creates a two-dimensional matrix named SI

matrix. Each entry in the matrix represents the

scheduling indicator of each job for each suitable

resource in the grid. Initially, the scheduler collects all

the necessary information about the job such as the

length of the jobs, input file size, output file size,

bandwidth and the information about the resources

such as its speed, number of success and failure. Based

on the requirement, the resources and jobs are created

with desired characteristics. Then, the values of fault

rate, response time and scheduling indicator are

calculated. Then, two-dimensional SI matrix is created

based on the scheduling indicator values.

Each row in the SI matrix is sorted in an

ascending order according to the scheduling indicator

of each resource. Finally, the job is submitted to the

resource with minimum scheduling indicator value. If

the job is completed successfully Ns is increased by 1

otherwise Nf is increased by 1.

IV. RESULTS AND DISCUSSION

Simulation setup
The arrangement of grid resources in

GridSim 5.0 and the hierarchy of resources used for

evaluating the proposed scheduling algorithm is given

in fig.2. Each resource is characterised by number of

machines and each machine is characterised by

number of processing elements.

Fig. 2. Arrangement of Grid Resource in Gridsim

Simulation Results

A set of 20, 40, 60, 80 and100 jobs is

executed with 10 resources. The makespan of the

proposed Fault Tolerant Scheduling (FTS) algorithm

is compared between the existing Fault Index Based

Scheduling (FIBS) algorithm in the Fig 3. From the

figure, it is clear that the makespan of the proposed

system is decreased by 15% compared to the existing

algorithm.

Resource

Machine 1 Machine 2

P P P P P

http://www.gjaets.com/

Keerthika, 2(3): March, 2015 ISSN 2349-0292

http://www.gjaets.com (C) Global Journal of Advance Engineering Technology and Sciences

14-18

Fig.3 Comparison based on Makespan

V. CONCLUSION

A fault-tolerant scheduling system is

proposed that uses the scheduling indicator value

when allocating resources to execute the jobs. The

throughput of the system is maximized and the

makespan is minimized. It is observed that the

performance of the proposed system is better than the

existing system. If the resource is failed when

executing a job, the job is assigned to another resource

and it is executed from the beginning. In order to

overcome this, checkpoint mechanism can be used.

Checkpoint is the ability to save the state of a running

job to reduce the fault recovery time. In case of fault,

this saved state can be used to resume the execution of

the job from the point where the checkpoint was last

registered instead of restarting from its beginning.

This can reduce the execution time to a large extent.

REFERENCES
I. Lee H, Chung K, Chin S, Lee J, Park S, Yu H

(2005), ‘A resources management and fault

tolerance services in grid computing’,

Journal of Parallel Distributed Computing

Vol.65 pp.1305–1317.Mohammed Amoon

(2012), ‘A fault-tolerant scheduling system

for computational grids’, Journal of

Computers and Electrical Engineering

Vol.38 pp.399–412.

II. Sathya SS, Babu K.S (2010), ‘Survey of fault

tolerant techniques for grid’, Computer

Science Review Vol.4 No.2 pp.101–120.

III. Nandagopal M, Uthariaraj V.R (2010), ‘Fault

tolerant scheduling strategy for

computational grid environment’,

International Journal of Engineering Science

and Technology Vol.2 No.9 pp.4361–4372.

IV. Khan F.G, Qureshi K, Nazir B (2010),

‘Performance evolution of fault tolerance

techniques in grid computing system’,

Journal of Computers and Electrical

Engineering Vol.36 pp.1110–1122.

V. Hwang S. and Kesselman C, A Flexible

Framework for Fault Tolerance in the Grid,

Journal of Grid Computing, Vol.1, 2003,

pp. 251-272.

VI. Dabrowski C, Reliability in grid computing,

International Journal of Computer Science,

Vol.8, No.1, 2009, pp. 123-129.

VII. Latchoumy P. and Khader S.A.P, Survey on

Fault Tolerance in GridComputing,

International Journal of Computer Science &

Engineering Survey (IJCSES), Vol.2, No.4,

2011, pp. 97-110.

VIII. Priya B.S, Fault Tolerance and Recovery for

Grid Application Reliability using Check

Pointing Mechanism, International Journal

of Computer Applications, Vol.26, No.5,

2011, pp. 32-37.

IX. Suresh P, Balasubramanie P, User Demand

Aware Scheduling Algorithm for Data

Intensive Tasks in Grid Environment,

European Journal of Scientific Research,

Vol.74, No.4, 2012, pp.609-616.

X. Keerthika P, Kasthuri N, An Efficient Grid

Scheduling Algorithm with Fault Tolerance

and User Satisfaction, Mathematical

Problems in Engineering, Volume 2013,

Article ID 340294, 2013.

XI. Suresh P, Balasubramanie P and Keerthika P,

Prioritized User Demand Approach for

Scheduling Meta Tasks on Heterogeneous

Grid Environment, International Journal of

Computer Applications, Volume 23, No.1,

2011.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

20 40 60 80 100

M
ak

es
p

an
 (

se
c)

Number of Jobs

FIBS FTS

http://www.gjaets.com/

