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Abstract 

Multi Clustered Parallel Genetic Algorithm is a type of multi population based genetic algorithm which gives 

equal importance to low fit individuals. It has been applied to 0/1 knapsack problem and found to perform well 

compared to the Standard Genetic Algorithm. This paper explores the working principle of multi clustered parallel 

genetic algorithm for the standard test functions for the single objective optimization problems and  compared 

with the standard genetic algorithm. The performance is compared with the standard genetic algorithm, the 

standard test functions of single objective optimization problems are used and the result shows that proposed 

method performs better with convergence velocity. 

 

I. INTRODUCTION 
On the notions of genetics and natural evolution, 

Genetic Algorithms (GA) (Holland 1992) is the 

stochastic search algorithms. “Survival of the 

fittest”, the Darwin’s theory is applied in the search 

space to direct towards the search process from the 

randomized initialization to a more prospective 

direction in the search space, which is very large. In 

the process of searching a solution in the search 

space, a number of genetic operators are applied to 

help the process of investigation. 

 

This paper focus on both standard genetic 

algorithm and multi clustered parallel genetic 

algorithm. Multi clustered parallel genetic algorithm 

works under the principle of “Birds of the same 

feather flock together”. Based on the type of the 

application the standard selection mechanisms like 

roulette wheel selection, tournament selection and 

rank based selection mechanisms are used in 

standard genetic algorithm. All these standard 

selection mechanisms aim to select high fit 

individuals in different proportion to perform 

genetic operations like crossover and mutation. The 

low fit individuals are given less chance to perform 

genetic operations thus the diversity of the 

population is reduced. But if the chance is given to 

the low fit individuals, they may produce good 

chromosomes in the further generations. This fact is 

given more importance in the multi clustered 

parallel genetic algorithm. 

In Multi Clustered Parallel Genetic Algorithm 

(MCPGA), the initial population are grouped into 

various groups based on the fitness value. 

Individuals in each group mate with each other to 

produce good chromosomes. In a group, if any  

 

chromosome comes up with better fitness value, it 

leaves the group and combines with the group which 

has the similar fitness value. The selection 

mechanisms followed in MCPGA insists on 

recombination within the same group thus providing 

equal chances for mating to the group with lower 

fitness value. This allows the multi clustered parallel 

genetic algorithm to maintain the diversity of 

individuals in the population. 

The performance of the MCPGA is proved by 

applying the standard test functions of single 

objective optimization problem for implementation. 

The same test functions are implemented with 

standard genetic algorithm and the results are 

compared in terms of convergence velocity and the 

profit obtained. 

 

II. LITERATURE REVIEW 
Due to its faster convergence, Multi population 

Genetic Algorithms (MGA) are popular, since each 

group evolves independent of each other. MGAs 

reduce the number of generations to find the best 

optimal solution or the near optimal solution. It is 

also more defiant to premature convergence. 

In [Petty et al, 1987], after each generation 

migration takes place and a copy of the best 

individual in each group is transferred to the 

neighbour group. 5 sub-population was used by 

Grosso in 1985 and the individuals were exchanged 

with fixed migration rate. Chaotic migration strategy 

[Chen et al, 2004] was implemented in MGA which 

employs the asynchronous migration of individuals 

during its parallel evolution. 

In each individual the mating tag has been added 

, [Booker ,1982] and [Goldberg, 1991]. The tag must 

match before a cross is permitted. Migration was 

implemented earlier to maintain the diversity of 

individuals in the initial population [Rebaudengo 

and Reordo, 1993 and Power et al, 2005]. Where as 

in genitor II by Whitely in 1988, the parallel GA, 
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where the individuals migrate from one processor to 

another. 

 

III. MATERIALS AND METHODS 
 

Multi Clustered Parallel Genetic Algorithm 

 

Multi Clustered Parallel Genetic Algorithm 

(MCPGA)[Vishnu Raja and Murali Bhaskaran, 

2012] is proposed with an objective to reduce the 

selection pressure of the global search space. In 

order to improve the performance of the GA, the 

algorithm is tuned in such a way the entire 

population is divided into several subpopulations 

and executed simultaneously. For effective grouping 

of the population, ranking of chromosome is done. 

 

IV. Methodology 
 

Initially the GA is started with a set of populations 

generated by random as its initial population. In 

MCPGA, based on the fitness evaluation the entire 

population is divided into several sub populations 

called clusters. Initial clusters are formed at random. 

The individuals present in a cluster can mate with 

each other to produce new offspring. Parent 

selection mechanisms, the genetic operators 

(crossover and mutation) are applied within the 

group. The offspring produced from each group will 

have different fitness values. In the next iteration, 

again ranking of chromosome is done after the 

fitness evaluation. And the algorithm continues till 

the termination condition is satisfied. The 

individuals migrate to other clusters based on the 

fitness value of each individual. 

The important property that makes the Multi 

Clustered Parallel Genetic Algorithm works better is 

the parallel implementation of multi population 

individuals. The parallel implementation of genetic 

operators like crossover and mutation in each group 

is done to improve the performance of the algorithm. 

In each generation, the worst individuals also gain 

the profit and migrate with the groups. This 

migration between the groups helps the worst 

individual to gain the fitness value after crossover 

and mutation process to retain the individual 

survival in the competition. When a chance is given, 

sometimes even the worst individuals can contribute 

towards the final solution. The pseudo code of 

MCPGA is given below: 

 

The pseudo code of Multi Clustered Parallel 

Genetic Algorithm is given below 

 

1. [ Initialization ] 

 Generate the initial population by random. 

2. [ Fitness Evaluation ] 

 Calculate the fitness value of each 

individual in the population. 

 

3. [ Grouping ] 

 Sort the individuals based on the fitness 

function. 

 Based on the fitness value arrange the 

population into groups. 

4. [ Breeding] 

 Each group will have individual 

population. For each group perform the following 

steps 

 Select the parents from the 

population using selection 

mechanisms. 

 Mate the parents to produce new 

offsprings. 

 Mutate the new offsprings. 

 Calculate the fitness of offspring. 

 Replace the offspring to the same 

group. 

5. [Migration] 

 Combine the groups into a single 

population. 

 Calculate the fitness value for all the 

individuals. 

 Sort the individuals based on the fitness 

value. 

6. [ Termination ] 

 Repeat the process from step -3 till the 

termination condition is reached. 

               Select the best solution from the current 

population. 

 

In MCPGA, the cluster size remains constant. 

Hence, without disturbing the cluster size the 

migration can be achieved between the groups to 

sort individuals from all the groups and grouping 

them again based on the fitness value. Since the 

cluster size is constant, the number of individuals in 

each cluster remains the same after migration. If one 

individual enters into a cluster based on the fitness 

value say, cluster 1 to cluster 2, then another 

individual from cluster 2 has to migrate to some 

other cluster based on the fitness value. By 

migration the individuals, it has the high fitness 

value remains in the first cluster and the individuals 

with low fitness value remains in the last cluster. 

 

V. Benefits of MCPGA 
 

From the process of MCPGA, notable benefits are 

observed. 

 The selection pressure is reduced. All the 

individuals in the population of a cluster 

are given chance to mate with each other in 
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the same group.  

 Since the groups are formed based on the 

fitness value. It is not necessary to worry 

about the mate between the worst 

individuals, if they produce best 

individuals they migrate with some other 

cluster. 

 The convergence is quicker compared to 

the single population GA. 

 It is very simple to use. 

It can be applied to any problems of any domain. 

 

Single objective Optimization Test 

Functions 

In Computational science, the optimization is to 

find the best solution to a problem. The objective 

chosen in this paper is a set of test functions of single 

objective optimization problems. These test 

functions are generally used for evaluating the 

performance of the evolutionary algorithms. The 

important consideration for the evaluation of the 

algorithm is to identify the problems where the 

performance is better. This will help to formulate the 

test set for which the algorithm should be evaluated. 

The adequate test set was designed by Eiben and 

Back. This test set has well characterized test 

functions that allow us to obtain and generalize as 

far as possible. A function F(x) is multi model if it 

has two or more local optima [Back, 1996]. A 

function of p variables is separable if it can be 

rewritten as a sum of functions of just one variable. 

Separable functions are optimized for each 

variable where as the non separable functions are 

more difficult to optimize as the accurate search a 

direction depends on one or more genes. The 

optimization problem is more difficult if the 

function F(x) is an multi model function. The search 

process must be able to avoid the regions around 

local minima in order to approximate, as far as 

possible, the global optimum. The most complex 

case appears when the local optima are randomly 

distributed in the search space. 

The goal of any optimization function is to find 

the best possible solutions x* from a set X according 

to a set of criteria F = {f1, f2, . . . fn}. These criteria 

are called objective functions expressed in the form 

of mathematical functions. An objective function is 

a mathematical function f : D С  Rn → R subject to 

additional constraints. The set D is referred to as the 

set of feasible points in a search space. In the case of 

optimizing a single criterion f, an optimum is either 

its maximum or minimum. The global optimization 

problems are often defined as minimization 

problems, however, these problems can be easily 

converted to maximization problems by negating f. 

A general global optimum problem can be defined 

as follows: 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒇(𝒙) 

The true optimal solution of an optimization 

problem may be a set of x* ∈ D of all optimal points 

in D, rather than a single minimum or maximum 

value in some cases. There could be multiple, even 

an infinite number of optimal solutions, depending 

on the domain of the search space. The task of any 

good global optimization algorithm is to find 

globally optimal or at least sub-optimal solutions. 

The objective functions could be characterized as 

continuous, discontinuous, linear, non-linear, 

convex, non-convex, unimodal, multimodal, 

separable  and non-separable. 

 

Following are the test functions taken up for the 

experimentation. 

 Ackleys Function 

 Sphere Function 

 Rosenbrock function 

 Matyas Function 

 Booths Function 

 

Ackleys Function 
 

Ackley is a Continuous, Differentiable, Non-

Separable, Scalable, Multimodal function which 

was first proposed by Ackley and the generalized 

figure was given by Back. The function has an 

exponential term that covers its surface with 

numerous local minima. The function definition is 

as follows: 

f(x) = ∑ (e−0.2 √ (xi
2 + xi+1 

2 ) + 3(cos(2xi)

D

n=1

+ sin(2xi+1))) 

 

Subject to -35 ≤ xi  ≤ 35. It is a highly multi model 

function with two global minimum close to the 

origin. 

x=f({−1.479252,−0.739807}, 

1.479252,−0.739807}),  

f(x∗) = −3.917275. 

 

Sphere Function 

Sphere function is a Continuous, Differentiable, 

Separable, Scalable, Multimodal function and has 

been used in the development of the theory of 

evolutionary strategies. De jong used sphere 

function as a test function for the evaluation of 

genetic algorithms. 

f(x) = ∑ xi
2

p

i=1

 

subject to 0 ≤ xi ≤ 10. The global minima is 
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located x* = f(0, … , 0),  

f(x*) = 0. 

 

Rosenbrock function 
Rosenbrock function is a Continuous, 

Differentiable, Non-Separable, Scalable, Unimodal 

function. is a non-convex function used as a 

performance test problem for optimization 

algorithms introduced by Howard H. Rosenbrock. 

 

f(x) =  ∑[100(xi+1 − xi
2)2 + (xi − 1)2]

D−1

i=1

 

 

subject to −30 ≤ xi ≤ 30. The global minima is 

located at x* = f(1, .. . . , 1), 

 

f(x*)=0. 

 

Matyas Function 

Matyas function is a Continuous, Differentiable, 

Non-Separable, Non-Scalable, Unimodal function 

and has no local minima except the global one. This 

function is used as a test function in order to evaluate 

the performance of optimization algorithms. 

 

f(x) =  0.26(x1
2 + x2

2) − 0.48x1x2 

 

subject to −10 ≤ xi ≤ 10. The global minimum is 

located at x* = f(0, 0),  

 

f(x*)=0. 

 

Booths Function 
Booths function is a Continuous, Differentiable, 

Non-separable, Non-Scalable, Unimodal function. 

This function has several numbers of global minima. 

f(x) =  (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 

subject to −10 ≤ xi ≤ 10. The global minimum is 

located at x* = f(1, 3), 

 f(x*) = 0. 

 

VI. RESULTSAND DISCUSSION 
 

Experimental Setup 
The chromosomes are represented in the form of 

double vector. The optimal parameters [10] for 

MCPGA are 

 

No of Individuals: 200 

Selection Mechanism: Tournament Selection 

Crossover Type: Uniform Crossover 

Crossover Rate: 0.90 

Mutation Type: Flip Bit Mutation 

Mutation Rate: 0.20 

Group Size: 4 

 

The performance of MCPGA was compared with 

standard genetic algorithm in several ways. Many 

numbers of experiments has been carried for the 

performance analysis of both MCPGA and SGA 

with fixed problem size. 

 

 Fixed number of generations 

 Variable number of generations 

 

The simulations of SGA are done in Matlab and 

the simulations of MCPGA in Java. Each Test 

functions were subjected to 15 continuous 

executions for both SGA and MCPGA and the 

optimal value and the number of generations taken 

for the convergence are noted. 

 

Comparison of SGA and MCPGA 
The experiments were carried out for continuous 

25 executions. The fitness value and the 

corresponding generations taken to obtain the fitness 

value for the first 15 executions were shown in the 

graph. 

Figure 1 and 2 shows the fitness value obtained 

and the number of generations taken in each 

execution for Ackley Function. 

 

 
 

Figure 1: Comparison of Fitness value for 

Ackley Function. 
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Figure 2: Comparison of Convergence velocity 

for Ackley Function. 

 

Figure 3 and 4 shows the fitness value obtained 

and the number of generations taken in each 

execution for Sphere Function. 

 

 
 

Figure 3: Comparison of Fitness value for 

Sphere Function. 

 

 
 

Figure 4: Comparison of Convergence velocity 

for Sphere Function. 

 

Figure 5 and 6 shows the fitness value obtained 

and the number of generations taken in each 

execution for Rosenbrock Function. 

 

 
 

Figure 5: Comparison of Fitness value for 

Rosenbrock Function. 

 

 
 

Figure 6: Comparison of Convergence velocity 

for Rosenbrock Function. 

 

Figure 7 and 8 shows the fitness value obtained 

and the number of generations taken in each 

execution for Matyas Function. 
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Figure 7: Comparison of Fitness value for 

Matyas Function. 

 

 
Figure 8: Comparison of Convergence velocity 

for Matyas Function. 

 

Figure 9 and 10 shows the fitness value obtained 

and the number of generations taken in each 

execution for Booths Function. 

 

 
 

Figure 9: Comparison of Fitness value for 

Booths Function. 

 

 

 
 

Figure 10: Comparison of Convergence 

velocity for Booths Function. 

 

On implementing the above mentioned single 

objective test functions, it is clear that MCPGA 

converges faster than the standard genetic algorithm. 

Due to its independent nature the functions behave 

differently in terms of the fitness value obtained and 

the number of generations taken for convergence.  

Ackley function almost shows a smooth regular 

value for MCPGA. The sphere function on 

implementing in MCPGA gave much more 

optimised fitness value than SGA. In SGA, the 

sphere function did not converge to the global 

optima beyond the limited value. 

The figures 5 and 6 of Rosenbrock function show 

that the values are grouped nearer to the global 

optimal value. It is identified that there are some 

high peaks for SGA which is not found for MCPGA. 

The Matyas function which belongs to the same 

genere shows the similar characteristics. MCPGA 

was able to converge faster compared to SGA. 

Booths Function converged efficiently for SGA, but 

it is found some variations in few iterations. But 

MCPGA converged uniformly in a better manner. 

 

VII. CONCLUSION 
 

The results clearly shows that multi population 

based Multi Clustered Parallel Genetic Algorithm 

performs well when compared with Standard 

Genetic Algorithm in terms of producing the good 

chromosomes with best fitness value in less 

convergence. The test functions which come under 

Multi Objective optimization problems are currently 

under study. The MCPGA offers a good 

synchronized method for solution to any practical 

problems with the desirable quality of giving 

importance to low fit individuals. 
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