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Abstract
This paper deals with the equation.

& — divig(|Vus|)Vu] = f(t.z,u,Vu) in Qr
(P) u(0,x) = up(x) = 0 in Q

gL =0 on X7,
where Q =]0,1[x]0,1[, Qr =]0,T[xQ2 and X7 =]0,T[x3Q, where (T > 0),
L e cra 'axeR, o>0and Vus =V(u=Gs)=uxV_G,.
We give the proof of global existence of our nonlinear reaction diffusion of problem (P). In the first we define an
approximating scheme and by using Schauder fixed point theorem in ordered Banach spaces, we show the existence
of a solution for this approached problem. Finally by making some estimations we prove that the solution of the
truncated equation converge to the solution of our problem. We use a new technique recently introduced in order to
generalize some of interesting prior works that has been presented.

Ga(x) = —
V2ro

Keywords: Weak solutions, Non linear restoration diffusion, Image processing.

Introduction

In recent years attention has been given to weak solutions of elliptic problems under linear boundary conditions, and
different methods for the existence problem have been used [1], [4], [5], [12] and [13]. The corresponding parabolic
case equations have also been studied by many authors, see for instance [1], [14] and [17].

Moreover, image processing is always a challenging problem, this topic has become “hot”, recently and a very active
field of computer applications and research [18]. Image is restored to its original quality by inverting the physical
degradation phenomenon such as defocus, linear motion, atmospheric degradation and additive noise. Partial
differential equation (PDE) methods in image processing have proven to be fundamental tools for image diffusion and
restoration [7], [8], [9] and [21].

In this paper, we prove the existence of solutions for the reaction- diffusion of the form:
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R
u((l a) = uog(x) = 0 in 2
|Dll
L

{ gy — Aiv[g(|Viue | )Vu] = f(t,x, w, Vu) in Qr
)

O o 32,

where £2 =]0O, 1[=<]O, 1|, Qpr =]O0.7"'[=<€2 and 32y =]0.7'[=<&E2, where (1' = 0),
Galx) = ——,'n_—_r-' 5 . axelR, o >0 and Vu, = V(s Go) = uw VGsH.
Inn this -uncl\ we noecd the following assumptions

(H,) g : [0, 4co[— [0, 4] Is A smooth non-increasing function, whore g(0) = 0O
ancl 131'117 g(=s) = 0.

(Hp)y f @ Qp =< IR x RN — M is moeasurable and f(f,2,.,.) : R = RN 5 R
are locally Lipshitz continuous: (3Ar - 0, for almost (2, = 2 /
| Lt e, o) — (0, a, O,0) = E(r)[|w— )4 ||l22—D]|]]) for all O = ||, |0, ||/:|| Pl =
(I p)a ftor nhimost (£, x) & Qq-, f{£,a,0,0) == 0,

(H )y F(u, p) & R < RY and for almost (£,a2) & Qp, wf(t,a, w.p) = O.

(M p)a | f(t,a, 0w, Vu)| = C(|lu)[F (L, x2) 4 vu’ ] whe u (' '. [0, 4oc[— [0, 4cof is

non-decreasing, F = I-'((_b)/ ) and |[Vu|? = (55~ A )¢+
In the present paper: We give the proof of global existence of our nonlinear reactlon dlffusion of problem (P), this is
done in four steps: the first step we show the positive solution. In the second step is to truncate the equation and shows
that the problem obtained has a solution. In the third step we establish appropriate estimates on the approximate
solutions. In the last step, we show the convergence of the approximate equation. We use a new technique recently
introduced, in fact our results f = f(t, x, u, Vu) are a generalization of the work f = 0 presented by Catté [16], and the
work f =f(t, x, u) presented by Alaa [2]. Now we will recall some functional spaces that will be used throughout this
paper. L%(0, T,HY(Q)) is the set of functions u such that, for all every t € (0, T), u(t) belongs to H(€) with the norm

1
T

T
[l 20,1012 002)) = /)||U(l‘)||f11¢g2]dt
Ja

L2(0,T;C°(€2)) is the set of functions u such that, for all every t € (0,T), u(t)
belongs to C*°°(2) with the norm

] o= 0,70 () = Inf{e, |[u(t)[ o= (@) < e on (0,T)}.

THE MAIN RESULT

A function u € L=(0,T; L*(Q)) n L*(0,T; H'(2)) is a weak solution of (P) if
for all p € C*(Qr) such that (T,.) =0,

dy _ .
/ [—<11,?)tt+g(|v'u.g| WuVldtde = | f(t,2,u(t,z), Vu(t, 1'))¢dtdr+/ ugp(0, z)dz.
Jor % JQr /0

Our main result in this paper is the following existence theorem. Assume that (Hs )1, (Hs )2, (Hs )3, (Hs ), and (Hg), and
that for all

R >0, sup (|f(t,z,u,Vu)|) € L'(Qr).
lu|<R
Then

(i) Problem (P) admits a weak positive solution.
(ii) If moreover forall 7= 1. f(t,z,r,p) <0and up(z) < 1, we have 0 < u(t,z) < 1 dans Qr.

A typical examples where the result of this paper can be applied are (i) thre of the diffusivity Perana and Malik [21]
are
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or g(s) = exp(~(1+ 7))

9(s) =7 ey

where A > 0. Or ;

9(8) = —=
550
where 7 > 0, d > 0 and A is a threshold (contrast) parameter.

(i) f(t,2,u, Vu) = —pu(u—a)**(1-u)** +au|Vul|*,1 < a < 2, where 3,7 >
0,0,7#zand0<a<1,a; <0

Proof of theorem:

The proof of (i) is done in four steps
Step (1): Positivity of the solutions
Consider the function

N - -1lifs <0
)= 0if s > 0.
Let £ > 0 we build a sequence of regular convex functions j.(s)
such as J'E(s) is bounded and for all s € R, j-(s) = 57, ]’E(S) — sign~(s) when

¢ — 0. (a typical example of j.(s) can be given hy

(5) = —2+ Zexp(—¢ [) ~=dt) if s <0
8= 0ifs>0,)

Let u be a solution of (1), we multiply both sides of the first equation of (P) by
7-(u) and by integrating on Q) =|0,¢[x{2 for t € [0, T, we obtain
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/ ];(u)ﬁdl?dt — / AVu.Vj_ (u)dzdt = / f(s,z,u,Vu)j_(u)dzds
Ja. ot Ja. Ja.

where A(t,z) = g(|Vu,|) € L==(0,T;C>°(£2)) because u € L><(0,T; L%(2)) and
g,G, are C° such as
Vs || L=(@r) = Co-

Moreover as (H,) g is non-increasing, then there a = g(Cy) > 0 which depends
only on o and on ||ug||r2(q) such as:

A(t,z) > a,V(t,z) € Qr.

Consequently,

/[JE(U)(t) — 7=(w)(0)]dx + a / IV'lL|2J:('ll,)dsd:l‘ = / f(s,z, u,V'u)_];_(u)dl'ds
JQ JQr JQr

Since u(0,z) = ug = 0 = j-(uo(x)) = 7-(u)(0,2) = 0= [, j-(u)(0)dx = 0 and
Jo, IVu|?3. (u)dsdz = 0. then we have

[ e ®dz < [ f(s2.u V) (w)dzds
J JQy

< / f(s,2,u, Vu)y_(u)dzds + f(s, 2, u, Vu)y_(w)deds
J(0.2) % [u<0]

J(0,2)x [u=0]

where u > 0, we have _];(u) = 0 and f(o_“x[u>0] f(s, z, u,Vu)];.(u)d-rds ==I{),
therefore a

[ s@@d< [ £ (s, 2, u, Vu)j. (w)dzds.

Ja J(0,8) % [u<0]

When £ — 0, we obtain
/(u)_ (t)de < — f(s,z,u,Vu)dxds < 0 Using (Hy)3
JQ J(0.t)x [u<0]

and the fact that (z)~ (¢) > 0, we obtain (u)~(f) = 0 on £
therefore
u > 0in Qr.

Step (2): An existence result when [ is bounded
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Assume (Hy)2, (H )3, and that there exists M > 0, such as for almost (t,2) € Qr
and Vr € R,

|f(t,z,r,p)| < M.

Then for all ug € L?(2), problem (P) admits a weak solution. Moreover, there
exists C = C(M,a,T, ||uo||.2(q)) such that

sup ||lu(t)|L2(0) + lull L2071 0)) < C.
0<t<T
Proof

We will show the existence of a weak solution by the classical Schauder fixed
point theorem. Firstly we introduce the space

W(0,T) = {ve L*(0,T; H' (Q)) : %l? e L2(0,T; (H' () )}

which is a Hilbert space for the graph norm. Let v € W(0,T) n L>(0,T; L%(Q2))
and we consider u(v) the solution of the linear problem

u(v) € C([0,T); L*(Q)) n L?*(0,T; H'(Q)),

for all ¢ € C'(Qr) such that p(T,.) =0

/ [~u() S+ Voo ) Vu()Veldide = [ f(t,z,v(t), Vo)pdtdr+ / o (0, )dz
JOor L Ja

JQr

We take ¢ = u(v) in (9), and deduce that for all 0 <t < T,

5 / u(v)?(t) + / 9(|Vve )| Vu(v)|* = / f(t, z,v(t), Vo)u(v) + 5 / ugda
2 Ja JQ. Ja. 2 Ja

Using (3) and the assumption (6) on f,

./Q‘ f(s,z,u(s), Vu(s))u(v)drds < (/(;, fQ)% (/(,-g‘(u(-v))2)’1r
< M|Q.|* (‘/(;((u(v_))?)%

<M [[\/EIQ: I]%[% /Q “(”)2]{’]
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<M [—5|Qt| ll/ u(v)“]
2c
“= JQ
we set ) 4 |Q |
Pl =l o=y
SNy S Q.| 2
f(s,z,u(s),Vo(s))u(v) <M [1+ — | u(v)
JQ, 4 Ja.

M' = sup(1 + == IQ‘ ), then
f(s,z,u(s), Vo(s))u(v) < M(1 +/ u(v)?) where MM’ denote M
¢ Q( t

Using (3), we obtain

l/u(v)’z(t)+a/ |Vu(v)? < M( 1+/ u(v)?) + = : /uoda
2 Ja : , 2 Ja

Now by ,ronwall"s lemma, we obtain the estimation (7). In fact
we set y(t) = [, u(v)*(t)dx

y(t)—2M / s)ds < y(t)—2M / y(©)ds+2a [ |[Vu(@) < 20+ [uollEzco
where _ Q¢ L

E[/(; y(s)dse2M*] = [y(t) — 2M /0 y(s)ds]e2M¢
implies

F A
[y(t) — 2M /O y(s)dsle Mt < e 2MUAL 4 ||uo||F2(0)]

i
. o L onruia
/ y(s)dse Mt < (2M + ||luollF 2(a)) [—57e 2V *15=6
ifis 27T

14
/O y(s)dse 2Mt < [1 + lwollF2eenl[l — e 2Mi e < T

97\[
souw e L2(0, T, H (Q2))

L
» 1 > -1" - A
/ y(s)ds < [1 + 557 lluwollZz(olle®™t — 1] < C(T)
o 20

These estimates lead us to introduce the space
Wo(0,T) = {ve W(0,T)n L>=(0,T; L2(£2)) : v(0) = up and

sup ”u(t)”L2(Q) T B ||U||1;2(0.T;ul(sz)) < C},
O<t<T
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where € = C (M. a,T. ||ual| L2(0)) is the constant obtained in (7). Then we define
the application :

F : Wo(0,T) — Wo(0,T)

v+ F(v) = u(v), where u is a solution of (9).

show that F(W,(0,.7T)) < Wir(0.T). let v (0. T) = v € W{0,T) then
F(v) = u = u verified, so F(W,L(0.7T)) < W,(0, T)
Wa(0,T) is a nonempty closed convex in W (0,7T"). and it injects Wy(0,7T) &
L2(0,T: L?*(€)) is compact. To apply the Schauder fixed point theorem, we show
that F is weakly continuous from Wi (0.7T") in W5(0,T"). Then consider a sequence
(v,,) in W,(0.T) such as »,, — v in W,(0,7T") and let u,, = F(v,,). According to
the classical results of compactness, we can extract from the sequence (u,) a
subsequence yet denoted (u, ) such that
-y, — u weakly in L2(0.7; H1())
-, — wu strongly in L2{0,7T: L%(2)) and almost everyvwhere in Q.
- Vu, — Vu weakly in L2(0,T; L2(£2)).
- v, — v strongly in L2(0.7T; L*(€)) and almost everywhere in Q7.
- VG5 *=v, — VG5 =v strongly in L2(0.T; L2(Q)) and almost evervwhere in Q7.
-g(|VG, = v, ) — g(|VG, = v|) strongly in L2(0.7; L2(£2)).

- f{t.z, 0, Vvn) — f(t,xz,v, Vv) strongly in L! QT)
The latter is obtained by applyving the dominated convergence theorem. We can
then pass to the limit in (9), with »,, instead of v, and obtain that u = F(v).
By uniqueness of the solution of (9), then the sequence u,, = F(v,,) converges
weakly to u = F(u) in Wu(0,7T). We deduce the existence of u € Wy (0,7T) such
as u = F(u), and thus the existence of u € W (0.,T7).
Step (3): Approximate problem and a priori estimates
Comnsider the truuncation function v, € Cg° () defined by

A 1if |r]| < n.
(el 0|y =nt1.

We truncate the nonlinearity f by v,

fn(t,z,u,p) = [n(ju] + Ilpll)f(t T, u,p)] * pu(t, z)
where p, € C°(R x RY), suppp, c B(0,2 =) fpn = L.pn = 0Oon (R x RM)
pn(y) = n® p(ny). We also consider non-decreasmg sequences uj; € C5°(2) such
that uf] — ug in L*(Q2) and

|fult, 2,7, p)| < M,
estimate (6) is applied, then we can deduce the existence of a weak solution of
the problem:
S — divlg(|V (un)o|) Vin] = fa(t.z, tn, Vun) in Qr
(P) un(O x) =uj(x) = 0on N
Jun — () on Y,
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Since ugj > 0 on {2, the (Hy)z assures that u, > 0is in Q7. Moreover, under the
assumption (Hy)s we have also u, fo(t,x, 1, Vugy) < 0in Qr.

Now we will show that a subsequence u,, converges to the weak solution u of
problem (P). For this we need to prove the following result:

Let (uy) the sequence of weak solutions defined by (F; ), then we have :
(i) -[Q'r | fn(t, @ tn, Vug)|dzdt < [ |ug|dz,
(ii) un is bounded in L?(0,T; H'(Q)) et

/ |tin fr(t. T, tUpn, Vg ) |dzdt S%/(u(’)‘)zdr,
T Q

(iii) u,, is relatively compact in L2(Qr).

Proof
(i) By remark (0.2.2) |fo(t,x, tn, Vun)| = — fa(t, z, un, Vuy). Thus by integrat-
ing the equation satisfied by u,, in Q1 we obtain

/u,,(T')d:r— f,,(t,r,un,Vun)=/ g dr,
Q Qr Q

therefore

[Vt un, V) ot < [ i
o Q

(ii) Firstly we show that wu,, is bounded in L?(Q7). for this we consider ¢ = u,,
as a function test in (/), we then deduce that

1 2 3 1 2
5 [ui® + [ a0V@)aDiVunl? = [ 1tz un Vanyun + 5 [ (u)?ds
= J Qe Q. «Q

Then we use (3) and the hypothesis (4) on f to obtain

5 [0 +a [ (Vu? <3 [ p)?de.
2 «2 Qe 2 @

We have also

L |2ty frn (., u,, . Vuy, ) |dzdt < %A(ug yidx,

where we have

sup |lu, () llezio) < lluwelleziay.
O<t<T

http://www.gjaets.com © Global Journal of Advance Engineering Technology and Sciences
49



http://www.gjaets.com/

[Hamzah., 3(5): May, 2016] ISSN 2349-0292
Impact Factor 2.365

99
ln |20, 70t 02y < (1 + 2—ﬂ_)||u(;|lu(sz‘-,.

(iii) Since 222 = div (A, Vg )+fn(t, 2, tn, Vuy) is bounded in L* (0, T; (HI(Q))')+
L'(). Since u, is also bounded L*(0,7T;H'(f)) and that the injection
H'(Q) O L*() is compact, it follows that u,, is relatively compact in L*(Qr).

We set Ti(s) = max{—k,min(k,s)} and Gr(s) = s — Ti(s) we remark
that for 0 < s < k, Ty(s) =sand Ti(s) =k for s > k.

There exists a constant R» depending on k and ||ugll1(0). such that
P g (£2)

/ IVTk(un)[? < B2

T

Proof

We multiply the first equation (P;) by T (u,) and we integrate on Qr. we obtain

ot Tk(uaniV(g(IV(un)al)Vun)=/ Ti(un) fu(t. .z, un, Vuy)
Qr t Jo, Qr

// Fun u,.)+a/ IVT;_.(U,n)lek/; | fnl-

We set Si(r) = fo Tk(s)ds, Si(ug) fo Ti(s)ds

dsk(u'n) - ‘ a“n
—a MG

T
/ O T (um) = / AOuin) — 51 (un(T)) — Se(un(0))
0 JO

Then
/ Sy (un(T)) +a/ VT () < k/ lfnl+/ Sy (1 (0))
Jo [ Qo Q

Si(un(T)) = 0 and for all r = 0, |Si(7)]| = &5 + k(r — k) *.

by using the result -
/ |fr{t.x.2n, Vun)|drdt < cte = R,
Q-

we have

a_/Q IVTL(un)|-<A/ |f,,|+/—+l.(u,,(0)_“
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i

a [ VTu(un)P < KRy + 100+ [ (0 (0) =) < Ck fua 0)])
Qr = 2

[ VT < Ok fun(O)l) = Re

T

Step (4): Convergence

Our objective is to show that u, — u solution of the problem (P;). The
seqquence uf is uniformly bounded in L'(€Q) (since it converge in L*(€2)) and by
er | fra(t, @, tn, Vuy)| < Ry the non-linearitie f,, is uniformly bounded in LI(Q).
Then according to a result of Barras, Hassan and L.Veron [10] the application

LY(Q) x LY(Qr) — L'(0,T; W' (Q)) is compact

(ug. fn) — uy

Therefore, we can extract a subsequence, still denoted by u,, such that
uy, — win L'(0,T; WH(€))

Uy, — u almost everywhere in Qr
Vu, — Vu almost everywhere in Qr.

Since f, is continuou, we have
fult.z,un, Vuy) — f(t.z,u, Vu) almost everywhere in Q7.

This is not sufficient to ensure that u is a solution of (P;). In fact, we have to
prove that the previous convergence is in L'(Q7). In view of the Vitali theorem,
to show that

fult, 00, Vuy) = f(t.2,u,Vu) in LY(Qr).
Is equivalent to proving that f,(t,x, u,, Vi) is equi-integrable in L'(Qr).
fa(t, z,un, Viuy,) is equi-integrable in LY (Qr).

The proof of this lemma requires the following result based on some prop-
erties of two time-regularization denoted by w., and u, (y,0 > 0), if u €
L%(0,T,H{(9)) such that u(0) = up € L*(2) we will denote by w(s) a quantity
such that w(s) — 0 when = — 0 and w(s) a quantity such that w7(s) —
0 when = — 0.

Let {u,), be a sequence in L?(0,T; H}(Q)) nC([0,T]) such that u,(0) = u] €
L3(Q) and (un)e = p1.n + p2.n with p1 , € L2(0,.T; H 1(Q)) and p2.,, € L'(Q7).
Moreover assume that u, converges to u in L*(Qr), and uj} converges to u(0)
in L?%(Q).

Let v be a function in C([0,T]) such that » > 0, ¥ <0, Y(T)=0. Let ¢ be a
Lipschitz increasing function in C°(R) such that (0) = 0. Then, for all k,~v > 0,

(pl.n- ﬁ"w(Tk(un) S Tk(u'm)‘y )) + L pz.nu""'v'g(Tk(un) == Tl:(um)‘))
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N | o . ‘ . .
zwmw;)+ww;»géwwmaum—Tuwﬁwwr

~ [ @O O)(TL(w) - Tu(w),)0),

where ¢(t) = f(: w(s)ds and Gr(s) = s — Ti(s).

Proof

(See [4], Lemma 7, p544). With py, = div(4,Vu,) € L*(0,T,H'(Q)),
P2n = fn(th- lln,Vlln) € A ((JT)

Proof lemma 0.2.3
Let A be a measurable subset of €, for all k£ = 0, we have

lf,l(t,.r,uﬂ.Vun)ld.r+/ |fr(t,z, un, Vuy)|dz

An[un >k

/ |f"(t*‘£7 uﬂsvu‘n)ldl7 — /
A ANfun<k]

: k|fa(t,z, un, Viug)|dz < Ai Un|fn(t, 2, un, Vuy)|dz

k ANfun >k] QT

1
[ Tunfa(ts 2t Vun)lde < ol
Anfug, >k : *

”U()lﬂ 2
Now if we choose k > —="2_ then we have

(N1

/ If'l‘:t‘ T-.Un‘V'U")ld;l' S
ANfug >kl y

—+ / lfﬂ(tr;l.~‘un-vun)|d.l'
AN [un <k]

gg| n

/ | FiChs 5t Vi) <
.-1(‘l[un>k}

< %—i—C](k)[/ F(_t,.r)-!—/ |V un|?]
- A Arnfun<k]
<s+amif Feo+ [ IV Tk () 1]
2 A ANfun <k

[because Ti(s) = sif 0 < s < k], or
/. VT = [ VT (1) — VT ()] + VTk(w) 2
Arifun, <k ANju,<k]

/. IV Tk (un) |2 < 2 VT (un) — VL) + 2 [ VT
AN fu, <k] ANfu,<k] A
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we have

/Q VT (un) |2 < C(k, ||uoll 1)
T

|V Tk () — V() [* X [u, <k) — 0 dans L' () strongly
|VTi(un) — VTk(u)[*X ju, <k is equi-integrable in L'(2)
So, there exists p; > 0 such that if |A| < p; then

20(k) IV T (1n) — VTk(u)|? <

AN[un<k]

|Q| i
.

On the other hand, F,|VTi(u)|? € L1(Q), therefore there exists p» > 0 such that
|A] < ps we have

LI m

ae [ vnwP+ [ Fee) <

Choose pg = inf(p,. p2) if |A| < p, we obtain

/ | fa(t.z,un, Vug)|dr < =.
A

Using the following step (5). we complete the proof of Theorem (0.2.1).

Step (5) théoréeme (0.2.1)(ii) Let u be a weak solution of (1), and assume
that 0 < up < 1in Q. Then0<u <1 in Qp.

Proof

We have already obtained the positivity of weak solutions if the initial data is
positive. So, we assume that uy < 1 and proof that u < 1. For this, we take
% = 1 — u, then we have Vu = —Vu, we can verify that u satisfies

we L=(0,T; L) n L%(0,T; HY(Y)), f(t,z,1 —m, V@)
for all ¢ € C'(Qy) such that o(T,.) =0,

dp
/ —ﬁ% + ¢g(|VT:|)VaVy = — / flt,z,1 —@,—Va)p + / Tow(0, x)dx
T 4 Qr 94

Then we consider the sequence of convex functions J;(r) is bounded and Vr € K,
2-(r) = sign—(r) when £ — 0. We take p(s,x) = 3.(T)(s, £)Xjo,((s), for that
e(t,r) = OVx € €, as a test function in (21) and integrating with respect to
t €]0, T[ we obtain

¢
/ 1:(m)(t)dz < / / —f(s,x,1 —w, V). (T)dsdx
Q 0 Jim<o]
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Passing to the limit as = — 07

/ (@) (t)dx < / / f(s.x,uw, Vu)dsdz
K JO Juw<0]

using that (Hy)s we deduce

Therefore w(¢) = 0 which implies u =1 — 7 < 1
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