GLOBAL JOURNAL OF ADVANCED ENGINEERING TECHNOLOGIES AND SCIENCES SIZE EFFECT IN SHEAR OF CONVENTIONAL AND SHEAR-STRENGTHENED

RC BEAMS WITH EB-FRP: STATE OF KNOWLEDGE AND RESEARCH NEEDS Zine El Abidine Benzeguir^{*}, Georges El-Saikaly, Omar Chaallal, F.ASCE

Department of Construction Engineering, École de technologie supérieure (ÉTS), Université du

Quebec, Canada

ABSTRACT

The size effect is known to have a major impact on shear strength of conventional reinforced concrete (RC) beams. This has been demonstrated through well documented data from numerous research studies since the 1960s. However, few studies have been conducted to investigate the size effect of RC beams shear-strengthened with externally bonded fiber reinforced polymer (EB-FRP). This is particularly relevant since the empirical equations and analytical models proposed by design guidelines for predicting the FRP contribution to shear resistance were developed on the basis of experimental laboratory test data on relatively small beams, with no consideration of the size effect. Therefore, the applicability of such models to large-size beams has not been thoroughly assessed and may well be questionable in view of some preliminary investigations. The objective of this investigation is to highlight the size effect on concrete shear strength of RC beams, either conventional or shear-strengthened with EB-FRP. The present study includes: i) extensive literature review and development of a database on the size effect; and (ii) identification and analysis of the parameters of major influence on the size effect. The research needs on the size effect of RC beams shear-strengthened with EB-FRP are also identified in this investigation.

KEYWORDS: Size effect; Reinforced concrete beams; Shear; Strengthening; Externally-bonded FRP.

INTRODUCTION

An important part of existing concrete structures were designed according to old codes and standards and therefore may present some deficiencies as far as their shear capacity, particularly with regard to the size effect on concrete shear strength. Cost-effective strengthening and rehabilitation techniques using EB-FRP composites were developed over the past two decades to extend the service life of such deficient structures and enhance their capacities. EB-FRP composites are used as an alternative to conventional retrofitting methods using externally bonded steel plates that present major drawbacks related to durability, excessive weight and handling operations.

Shear resistance of RC beams depends on several inter-related and complex mechanisms and parameters that are not understood contrary to RC beams subjected to flexural and axial loadings. This knowledge gap despite the numerous studies dedicated to the subject over more than a century is rather attributed to the complexity of the interacting parameters coming to play into the shear behavior and corresponding failure modes. This partly explains the lack of a universal approach on this subject among modern design codes and standards. The various parameters on which depends the shear strength of RC beams include the concrete compressive strength (f'_c), the longitudinal steel ratio (ρ_w) and the transverse steel ratio (ρ_s), the effective depth of beams (d), the shear span-to-effective depth ratio (a/d), as well as the size of aggregates (a_g). The contribution to shear resistance attributed to the EB-FRP for shear strengthening RC beams, which has a different behavior than concrete and steel, is another parameter that adds to that complexity.

The present study focuses on the geometry of the beams and particularly their effective depth, which give rise to the so-called "size effect" phenomenon. For conventional RC beams, the size effect has been taken into consideration in concrete shear strength models by most modern design guidelines, on the basis of results of numerous experimental studies. This is not the case for EB-FRP shear strengthened RC beams where very few investigations have been conducted so far on the size effect. Moreover, the analytical models and design equations in current guidelines, for the FRP contribution to the shear resistance, were developed based on experimental test data conducted on small specimens. Therefore, they do not take into consideration the influence of the beam size, and thus may not predict accurately the concrete shear strength of large-size beams shear-strengthened with EB-FRP composites. Thus, identifying the level of influence and developing an inclusive design model that takes into account the beam size to evaluate the contribution to the shear resistance of EB-FRP composites, is of paramount importance.

The size effect is present when there is a difference in shear stress at failure (shear strength) for geometrically similar beams of different sizes. The size effect generally results on a reduction of the shear strength as the effective depth "d" increases, thus associating the mechanical properties of the reinforced concrete to its geometrical properties. The size effect was associated for a long time with the brittle shear failure mechanism due to the initial defects of materials, known as the Weibull theory. The study by Kani [1] was the first that

included the beam size as a variable parameter and provided a direct evidence of a strong size effect in geometrically similar beams of different sizes [2]. This was later confirmed by several studies carried out on conventional RC beams with and without internal shear reinforcement.

Research studies on the size effect of RC structures shear-strengthened with EB-FRP are relatively limited and very few [3-8]. Moreover, the maximum size of beams considered in these studies was 680 mm compared to 3000 mm in the studies on the size effect of conventional RC beams. In addition, they did not take into consideration the main parameters influencing the size effect, as considered by the studies on conventional RC structures, such as the span-to-depth ratio a/d, the size of aggregates a_g , the ratio of longitudinal tensile reinforcement ρ_w , and the concrete compressive strength f'_c . The study by Bousselham and Chaallal [7] was the only one that assessed the influence of the presence of internal steel-stirrups, ρ_{ss} on the size effect.

The present literature review will develop an extensive database of all experimental studies conducted in the literature on the size effect in shear of RC beams, either reinforced with steel (conventional) and FRP bars, or shear-strengthened with EB-FRP. The gathered database will be a valuable tool to identify, synthesize and evaluate the parameters of major influence on the size effect and to highlight the research needs on the size effect of RC beams strengthened in shear with EB-FRP, and to suggest targeted research focusing on the major parameters that influence the size of beams.

SIZE EFFECT

The size effect occurs when the shear strength of geometrically similar beams of different sizes decreases as the beam size increases; this has been observed by the behavior of existing large scale beams that exhibited lower concrete shear stress compared to small scale specimens carried out in laboratories. The Code development Committees generally regarded the size effect as an inconvenience that theorists were trying to impose on them [9]. There are two main types of size effect: 1) Statistical size effect (Weibull theory), which depends on the initial composition of the material such as, for example, the concrete and the position of aggregates which is random and never similar. The Weibull theory, which is associated with the initial defects of materials, is explained by Bažant and Planas [10] as a chain when the weakest link determines the strength of the whole. In this case the statistical size effect derives from the fact that the longer the chain the greater the likelihood of weak links that imply a potential low resistance; and 2) Fracture mechanics size effect, based on the theory of energy release during the development of cracks. This theory represents the only significant theory applicable to concrete, which is adopted by all experimental studies.

Bažant and Planas [10] proposed a law that takes into consideration the size effect on shear strength of structures, which has been validated by a very large number of experimental tests, as follows:

$$\sigma_{Nu} = \frac{Bf'_t}{\sqrt{1 + D/D_0}} \tag{1}$$

Where f'_t : the tensile strength of the material, *B*: a dimensionless constant (geometry-dependent parameter) and D_0 : a constant (size-dependent parameter) with the dimension of length. Both *B* and D_0 depend on the fracture properties of the materiel and on the geometry of the structure, but not on the structure size.

According to Syroka-Korol [11]: "the size effect phenomenon in quasi-brittle structures is related to a transition from a ductile behaviour of small specimens to a totally brittle response of large ones."

In what follows, analysis of database parameters will be expressed:

i) either by normalized shear strength, $v_n = \frac{V_T}{b_w d \sqrt{f_c'}}$, where V_T = experimental shear resistance in N; $b_w =$

widh of beam in mm; d = effective depth of beam in mm and $f'_c =$ concrete compressive strength in MPa;

ii) or percentage of shear strength loss, $\left(1 - \frac{v_{nd}}{v_{np}}\right) * 100$, where v_{nd} = normalized shear stress of large scale beam with effective depth *d* and v_{np} = normalized shear stress of reference beam (small scale beam from the same series).

REVIEW AND SYNTHESIS OF PREVIOUS WORK

For decades, researchers conducted studies on small specimens in laboratories to study the behavior of RC beams, for obvious reasons related to cost of materials, testing equipment and time of implementation. However, once it became apparent that the size effect may have a major impact on concrete shear strength of RC structures, the effective depth of beams d became a key parameter of study when investigating the shear behavior. Figure 1 presents histograms of the percentage of test data as a function of d for all the research studies conducted on the size effect in shear of RC beams. The results revealed that 76% of available experimental data are based on specimens with d less than 700 mm. Moreover, just 6% of all studies corresponded to RC

beams strengthened in shear with EB-FRP, in which 77% consisted of d less than 500 mm. This clearly highlights the distinct lack of research on the subject and the need for more size effect studies on larger sizes of RC beams shear-strengthened with EB-FRP composites.

Figure 1: Distribution of test data on size effect as a function of d (in percentage)

The size effect in shear of conventional RC beams is relatively well documented. It has been assessed by many researchers since the 1960s. Five parameters have been identified in the literature to have major impact on the size effect in shear strength: 1) the nominal size of aggregates (a_g) that governs the mechanical action of the aggregate interlock; 2) the concrete compressive strength (f'_c) ; 3) the ratio of longitudinal tensile reinforcement (ρ_w) that governs the dowel action; 4) the ratio of transverse steel reinforcement (ρ_s) that influences the diagonal shear crack patterns (spacing and opening); and 5) the shear span-to-effective depth ratio (a/d) that defines the slenderness of the beam.

An extensive database of all available experimental studies on the size effect in shear of concrete beams with reinforcing steel and FRP bars, steel fiber-reinforced concrete (SFRC) beams, and RC beams shear-strengthened with EB-FRP was developed in the present study and is presented in Table 1. It includes all the properties and configuration of specimens (geometry and type of beams) and the study parameters of major impact (a/d, a_g , f'_c , ρ_w , ρ_s and ρ_{FRP}). Note that the number of specimens shown in the table represents the tests that were deemed valid, unambiguous and non-repetitive or irrelevant. Overall, 478 specimens from 48 studies were selected.

From Table 1, the following observations can be made: 1) very few studies evaluated the size effect on RC beams shear-strengthened with EB-FRP; 2) only one study considered the full wrap configuration for shear strengthening with EB-FRP; 3) the majority of specimens consisted of rectangular beams; 4) only one study considered pre-cracked RC beams; and 5) none of the parameters of major influence on size effect had been assessed by the studies on RC beams strengthened with EB-FRP, except for the transverse steel ratio (ρ_s) considered in just one study.

Details of all the 478 specimens of studies, as numbered in Table 1, are also provided as an appendix in Table A.1 (RC beams reinforced with steel and FRP bars) and Table A.2 (RC beams shear-strengthened with EB-FRP). It includes: 1) the geometry and type of beams (b, d, a/d); 2) properties and ratios of all materials $(a_g, \rho_w, \rho_{sv}, \rho_{FRP}, \rho_s \text{ and } f'_c)$; and 3) the experimental results (total shear resistance, V_T and resistance due to EB-FRP, V_{FRP}). In-depth analysis of these tables made it possible to distinguish the studies according to the parameters of major influence on the size effect, as presented in the following sections.

Figure 2 presents the distribution of test specimens, in percentage, according to the different parameters of major impacts on the size effect. Every set of histograms for each parameter represents the entire 478 test specimens considered, corresponding to 100%. The most important findings are as follows: 1) For each parameter, the number of tests on RC beams shear-strengthened with EB-FRP is very few or even negligible; 2) Just 9% of all tests consisted of T-section specimens despite the fact that most RC structures, including bridges, are built with T-section beams; 3) 78% of the tested RC beams (i.e., 374 specimens) were without any internal shear reinforcement.

Table 1. Summary of experimental research on size effect of RC beams

_	
	Properties and parameters

						Ge	ome	etry				Typ	e of am	1		S	tud ame	y ters	:	SI	hear	r str ith 1	eng ER-1	ther FRP	ning
	Author	Year	No. of specimens	Rectangular section	T-Section	$d \leq 200 \ \mathrm{mm}$	$200 < d \leq 450$	$450 < d \le 700$	$700 < d \leq 1000$	d > 1000 mm	$a/d \leq 1$	1 < a/d < 2.5	$a/d \ge 2.5$	Pre-cracked beams	a/d	f_c'	ρ_w, ρ_{FRP}	ρ_s	a_g	U-wrap	Full wrap	Continuous	Strips	One layer	Multiple layers
	Leonhardt and Walther ¹	1962	8																						L
	Kani, GNJ	1967	22																						
	Bhal ¹	1968	6																						
	Swamy and Shamsuddin	1971	26																						
	Taylor, HP	1972	8																						
	Walraven, Joost C ⁻¹	1978	3																						
	Chana, PS	1981	4																						
	Iguro et al.	1985	7																						
	Niwa, Yamada ²	1987	3																						
	Bazant and Kazemi	1991	5																						
	Walraven and Lehwalter	1994	19																						
SU	Grimm, R ²	1997	6																						
ean	Gannoum	1998	24																						
P.	Podgorniak-Stanik ²	1998	6																						
R	Collins and Kuchma	1999	25																						
lal	Tan and Lu	1999	12																						
tion	Kotsovos and Pavlovic	2001	16																						
ent	Fujita et al.	2002	9																						
NUC	Yang et al.	2003	16																						
ŭ	Bentz and Buckley	2005	9																						
	Zhang and Tan	2007	12																						
	Yang, K H	2007	12																						
	Zakaria et al.	2009	4																						
	Sneed and Ramirez	2010	8																						
	Yu et al.	2011	6																						
	Kim et al.	2013	15																						
	Yu et al.	2013	6																						
	Arun and Ramakrishnan	2014	9																						
	Syroka-Korol and Tejchman	2014	6																						
	Birrcher et al.	2014	9																						
	El-Sayed and Shuraim	2016	12																						
Ŋ	Minelli et al.	2007	9																						
ER	Minelli et al.	2014	9																						
•	Shoaib et al.	2014	12																						
	Massam ³	2001	6																						
	Matta et al.	2007	4																						
ars	Bentz et al.	2010	11																						
$\mathbf{p}_{\mathbf{g}}$	Alam and Hussein	2012	6																						
\mathbf{RP}	Matta et al.	2013	4																						
Ĩ	Alam and Hussein	2013	12																						
	Ashour and Kara	2014	6																						
<u> </u>	Mahmoud and El-Salakawy	2016	12											<u> </u>									-		
	Deniaud and Cheng	2001	6																						
	Qu et al.	2005	6																						
RP	Leung et al.	2007	9							<u> </u>				ļ								ļ			
3-F	Godat et al.	2010	6																						
E	Bae et al.	2012	6																						
	Bousselham and Chaallal	2013	12																						
1	Nguyen-Minh and Rovňák	2015	15							_						I T									

Note : The number of specimens shown in the table represents tests that are deemed valid, unambiguous and non-repetitive or irrelevant; Results are taken from the study by: ¹Zararis and Papadakis [12], ²Reineck and Kuchma [13], ³Matta [14]; The study by Godat [15] is a numerical modelling of the specimens tested by Qu [4].

Figure 2: Distribution of test data on size effect for each study parameter (in percentage)

PARAMETERS OF MAJOR INFLUENCE ON SIZE EFFECT

Figure 3 shows the number of test specimens according to each parameter that was considered as a study parameter, in order to evaluate its influence on the size effect. Of those tests, 174 specimens (18 studies) varied the ratio of longitudinal reinforcement (ρ_w , ρ_{FRP}), 143 specimens (11 studies) examined the influence of the concrete compressive strength (f'_c), 103 tests (7 studies) evaluated the impact of shear span-to-effective depth ratio (a/d), 94 specimens (9 studies) varied the ratio of transverse steel (ρ_s), and finally 69 specimens (5 studies) considered the size of aggregates (a_g) as a study parameter. It should be noted that in all the studies on RC beams shear-strengthened with EB-FRP, only the addition of the FRP was assessed as a study parameter without taking into consideration all the other parameters of major impact. Except Bousselham and Chaallal [7] who evaluated the influence of internal transverse steel (ρ_s) on the size effect, as shown in the figure. Refer to Table 1 for the corresponding authors of each study parameter.

Figure 3: Distribution of specimens that assessed the influence of each parameter on size effect

Size of aggregates (a_g)

The database shows that the majority of studies on the size effect considered the same ratio of materials (ρ_w , ρ_s , ρ_{FRP}) for the same series of geometrically similar RC structures of different sizes, except for the size of aggregates (a_g), where the researchers kept the same a_g for the whole series of specimens. However, just five studies (69 specimens) considered " a_g " as a study parameter of major influence on the size effect of RC beams. In fact, only the studies conducted by Swamy and Shamsuddin [16], Taylor [17] and Chana [18] have scaled the

aggregates simultaneously with increasing the effective depth "d" by keeping the same ratio (a_g/d) , as shown in Table 2. Iguro [19] have increased the size of aggregates from 10 mm to 25 mm for each increase in "d" (from 600 mm to 1000 mm and from 1000 mm to 2000 mm). However, Ghannoum [20] considered two series of specimens with two different sizes of aggregates each $(a_g = 10 \text{ and } 20 \text{ mm})$, resulting in a gradual decrease in the ratio (a_g/d) with increasing "d" between 65 mm and 870 mm.

The size of aggregates governs the mechanism of aggregate interlock and, hence, contributes significantly to the shear resistance of cracked RC beams. This has been evaluated by Fenwick and Paulay [21] as the most important parameter influencing the load carrying capacity, which contributes to 70% of the total shear resistance. According to Taylor [17], when the size of aggregates is properly scaled with the increase in beam's size, the decrease in concrete shear strength due to size effect becomes negligible. Swamy and Shamsuddin [16] revealed that the increase in concrete shear strength with increasing " a_g " is partially due to the enhancement in aggregate interlock. This was observed in the results by Iguro [19], where the loss in shear strength of RC beams without shear reinforcement with increasing "d" was reduced by half (from 32% to 16% loss) when increasing a_g from 10 mm to 25 mm in the larger beam (d = 1000 mm) (see Table 2).

Moreover, despite the scaling of a_g , the results in the table showed an increase in shear strength loss with increasing the beam's size, hence demonstrating the existence of a size effect. However, no (or negligible) size effect was observed in some specimens when doubling *d* with a_g [16, 19]. Therefore, it can be deduced that the size effect may be suppressed provided that a good correlation between the size of aggregates and the depth is established for a given beam.

It should be mentioned that this parameter of major influence on the size effect was not evaluated in any of the studies carried out on RC beams shear-strengthened with EB-FRP composites. However, other than the tension stress exerted by the externally bonded fibers to resist the shear force of specimens, the FRP wrapping can provide confinement to the cracked concrete, hence increasing the shear capacity [22]. A better confinement reduces the opening of shear cracks, enhances thereby the aggregate interlock mechanism and, consequently, mitigates the size effect of RC beams.

	Swa	amy (19	971)		Taylor	(1972)			Chana	(1981)			Iguro	(1985)	
<i>d</i> (mm)	57	86	171	140	232	465	930	42	106	177	356	600	1000	1000	2000
a_g (mm)	6.35	9.5	19	2.4	9	19	38	2.4	5	10	20	10	10	25	25
a_g/d	0.11	0.11	0.11	0.02	0.04	0.04	0.04	0.06	0.05	0.06	0.06	0.017	0.010	0.025	0.012
Loss ¹	-	14.9	14.1	-	8.3	15.5	20	-	23.6	37.1	54.4	-	32	16	35

Table 2. Influence of aggregate size " a_g " on the size effect

Note : 1 Loss in shear strength (%)

Longitudinal tensile reinforcement (ρ_w, ρ_{FRP})

The longitudinal reinforcement contributes to the total shear resistance by its tension force and the dowel action mechanism, which is generated right at the shear crack. The dowel action depends mainly on the diameter of longitudinal reinforcement, the concrete cover and the presence of transverse shear reinforcement [23].

Taylor [17] revealed that the dowel action contribution to the total shear resistance of RC beams without transverse steel is between 15% and 25%. According to the author, the contribution to shear resistance due to dowel action is significantly associated with the layout of longitudinal reinforcement (one or more layers). In fact, the dowel action of a beam with two layers of two reinforcing bars each was only 40% greater than that with one layer of two bars of the same diameter. Moreover, the longitudinal steel bars, ρ_w , distributed along the entire depth of the beam has also an impact on the behavior of RC beams by increasing their shear strength. Collins and Kuchma [24] examined two series of geometrically similar beams without internal transverse steel; the first series with equally spaced layers of crack control longitudinal steel reinforcement and the second without. The results showed a decrease in shear strength with increasing "d" for the second series of specimens, whereas almost the same resistance was obtained in those of the first series. For instance, a loss of 27% ($f_c = 86$ MPa) and 14% ($f'_c = 50$ MPa) in resistance was obtained in the specimens compared respectively to 4% ($f'_c = 86$ MPa) gain and 5% ($f'_c = 50$ MPa) loss in those with distribution of reinforcing bars. This could be attributed to the fact that the distribution of longitudinal steel bars along the entire depth prevents the development of diagonal shear cracks, hence resulting in enhanced resistance with increasing "d". Therefore, it can be concluded that the enhancement in shear behavior due to the distribution of bars over the beam depth may have a positive impact in mitigating the size effect.

Zakaria [25] stated that for larger beams, greater spacing, and hence wider, diagonal shear cracks occurs when increasing "d", due to the reduced capacity of the longitudinal reinforcement to control the crack spacing; in

fact, as the distance from mid-height of the beam to the reinforcing bars increases, the crack spacing becomes larger. Moreover, the ratio of longitudinal reinforcement (ρ_w) has an inversely proportional relationship with the spacing/opening of cracks; an increase in the amount of reinforcing bars enhances the shear mechanism by decreasing the crack spacing, which results in smaller openings. This indicates that the size effect can be mitigated by the smaller cracks in increasing the amount of longitudinal reinforcement.

Figure 4 illustrates the normalized shear strength as a function the amount of longitudinal steel reinforcement (ρ_w) . It includes all the studies that investigated the influence of ρ_w on the size effect of RC beams (Table 1). The results revealed an increase in shear strength as ρ_w increases.

All the studies on concrete structures with reinforcing FRP bars showed the existence of a size effect, which seems to be similar to that of RC beams with steel bars. Figure 5 presents the variation of the shear strength with increasing the beam's size, for the specimens that evaluated the influence of the ratio of longitudinal FRP bars (ρ_{FRP}) on the size effect. The figure showed a decrease in strength as "d" increased, whereas for the same series of specimens, an increase in shear strength occurred when increasing ρ_{FRP} . This clearly demonstrates the existence of a size effect, which can be significantly mitigated with the increase in ρ_{FRP} , as in the case of studies by [14, 26]. According to Alam and Hussein [27], the size effect is even more pronounced in beams with reinforcing internal FRP bars than in beams with steel bars.

Figure 4: Variation in shear strength of RC beams with increasing longitudinal steel ratio ρ_w

Figure 5: Influence of ρ_{FRP} ratio on the size effect of beams with reinforcing FRP bars

Concrete compressive strength (f'_c)

The concrete stress-strain response shows that the increase in the concrete compressive strength, f_c , from normal-density to high-density (between 20 and 100 MPa) decreases its ductility, which results in a more brittle failure. A high resistance concrete drives the shear cracks to pass through the aggregates instead of bypassing them, because the resistance of cement paste exceeds that of aggregates, generating a smoother surface plane of

http://www.gjaets.com/

cracks. According to El-Sayed and Shuraim [28], smoother surface cracks decrease the aggregate interlock. However, as explained earlier in section-*Size of aggregates*, an increase in the size of aggregates leads to rougher crack surface, which results in an aggregate interlock enhancement that tends to mitigate the size effect. Therefore, it can be concluded that increasing the concrete compressive strength has a negative impact since it amplifies the size effect of RC beams.

Figure 6 presents the influence of the concrete compressive strength, f'_c , on the normalized shear strength with increasing the effective depth "d". The figure included the studies that investigated " f'_c " as a study parameter where all the specimens were slender type RC beams without internal shear reinforcement (Table 1). The results revealed that the resistance of RC beams is inversely proportional to f'_c and d. In fact, a decrease in shear strength occurred with the increase in f'_c and/or the increase in beam's size. Moreover, a 14% loss in shear strength was obtained when doubling "d" (from 460 mm to 920 mm) for $f'_c = 50$ MPa compared to 27% loss in the same specimens for $f'_c = 90$ MPa. This demonstrates that the size effect was influenced by " f'_c ", and is more pronounced at high resistance concrete beams. The same was also demonstrated by Fujita [29] who stated that the size effect became more significant with a greater effective depth and a greater concrete compressive strength.

There are no studies that assessed the influence of f'_c on the size effect of RC beams strengthened in shear with EB-FRP. Although some design codes and standards have recommended an upper limits for f'_c when designing RC structures retrofitted with EB-FRP (e.g., CSA S806-12 [30] where $f'_c \leq 80$ MPa), these limitations seem to be insufficient to suppress the size effect since it was demonstrated that it exists even for values of f'_c much smaller than 80 MPa. Therefore, the procedures for shear design calculations of RC beams shear-strengthened with EB-FRP should take into consideration the influence of f'_c on the size effect, which is not yet captured in current guidelines and codes.

Figure 6: Influence of f'_c on the size effect of RC beams

Shear span-to-effective depth ratio (*a/d*)

Figure 7(a) illustrates the influence of shear span-to-effective depth ratio (a/d) on the shear strength of RC beams for the studies that varied (a/d) as a study parameter to assess the size effect (Table 1). The results revealed the existence of a size effect in shear for all tested specimens, where both the slender and deep beams exhibited a decrease in shear strength while increasing the effective depth "d". In addition, the shear strength of RC beams has been inversely proportional to ratio (a/d); in fact, for the same beam's size "d", the specimens exhibited lower levels of resistance with greater values of (a/d), particularly for slender beams. Also, it was noted that the size effect was more pronounced in deep beams compared to slender ones; where higher loss rate in the shear strength was observed with increasing "d", in particular for beams with a size d < 700 mm.

Figure 7(b) presents the variation in shear strength of RC beams without internal transverse steel according to several values of ratio (a/d) by Kani [1]. The results showed a more pronounced size effect with the decrease in (a/d), especially for deep beams, where a significant loss in shear strength occurred with increasing "d". This holds true for an effective depth "d" less than 550 mm, whereas no size effect was observed for deep beams beyond this value. This was later confirmed by Tan and Lu [31] who revealed that the critical depth of deep beams, beyond which the size effect becomes insignificant and seems relatively independent of the ratio (a/d), is between 500 and 1000 mm. However, for slender beams with higher values of (a/d), the curves show a quasi-linear response of size effect, where a decrease in shear strength occurred with increasing "d", regardless of the

beam's size. Moreover, in all tested specimens, lower levels of resistance were obtained in slender beams compared to deep beams, as the ratio (a/d) increased.

Figure 7: Influence of shear span-to-effective depth ratio (a/d) on the size effect

Transverse steel reinforcement (ρ_s)

Experimental tests showed that the presence of internal shear reinforcement significantly increases the shear strength of RC beams, and hence mitigates the size effect. The fact that the resistance of steel stirrups is greater than that of concrete tends to overshadow the size effect on total shear resistance [7]. This is attributed to the fact that the transverse steel enhances the aggregate interlock by preventing the diagonal shear cracks to widen, and thus reduces the size effect. For instance, the loss in shear strength with increasing the beam's size decreased from 36% to 2% in the tests performed by Kotsovos and Pavlovic [32] on RC beams without and with internal transverse steel ($\rho_s = 0.25\%$), respectively. Yu and Bažant [33] revealed that although the transverse steel mitigates the size effect, it cannot be completely suppressed regardless of the amount of steel-stirrups.

Figure 8 presents the variation in shear strength of slender (Figure 8(a)) and deep (Figure 8(b)) RC beams with increasing the effective depth "d", as a function of the presence and increase in transverse steel ratio (ρ_s). It includes the studies that considered (ρ_s) as a study parameter to assess the size effect (Table 1). The results revealed the existence of a size effect in all series of tested specimens without internal shear reinforcement ($\rho_s = 0$), where both the slender and deep beams exhibited a significant loss in shear strength while increasing the beam's size. However, the addition of steel-stirrups reduced the size effect where lower loss rate in the shear strength occurred with increasing "d". In fact, for the same series of specimens, a considerable increase in shear resistance occurred with the presence of ρ_s , especially in slender beams of larger sizes.

Figure 8: Influence of transverse steel ratio ρ_s on the size effect: a) Slender beams; b) Deep beams

Analysis of the literature data revealed that the use of steel fibers in RC (SFRC) structures better control and stabilize the shear crack propagation. This may be attributed to the homogeneous distribution of steel fibers into the entire concrete section, hence influencing the size effect. In fact, studies on the size effect of SFRC beams [34-36] have shown that steel fibers could mitigate the size effect if provided in sufficient quantities. Also, the authors demonstrated that SFRC beams have a similar shear behavior as that of RC beams with the minimum amount of internal transverse steel. Shoaib [36] demonstrated that the replacement of the minimum shear reinforcement amount with steel fibers in RC beams where $h \le 600$ mm and $f'_c \le 40$ MPa, as required by the ACI 318-14 [37] code, can also be applicable for larger beams (up to 1000 mm depth) and higher concrete compressive strength (up to 80 MPa).

The histograms in Figure 9 illustrate the variation of shear strength with increasing "*d*" according to the presence and increase of steel fibers ratio (ρ_{SFRC}) in RC beams for the study by Minelli [34]. A significant increase in shear resistance was obtained with the addition of steel fibers. In addition, the results showed the existence of a size effect in SFRC beams for a depth "*d*" less than 940 mm, beyond which the size effect becomes insignificant. Moreover, it is observed that the increase in the amount of steel fibers has reduced the size effect; for instance, an increase in ratio ρ_{SFRC} from 0.64% to 1% reduced the loss in shear strength respectively from 42% to 23%, while increasing "*d*" from 440 to 940 mm.

Figure 9: Influence of steel fibers on the size effect of RC beams

The shear behavior of RC beams strengthened in shear with EB-FRP with internal shear steel reinforcement is quite different than those without, which is due to the interaction between internal transverse steel and EB-FRP. This interaction tends to decrease the gain contribution to shear resistance due to FRP with the presence and increase in transverse steel ratio (ρ_s). However, despite the major influence of ratio ρ_s on the size effect of RC

http://www.gjaets.com/

beams, only the study by Bousselham and Chaalla [7] on shear strengthening with EB-FRP considered ρ_s as a study parameter, in order to assess its influence on the size effect of retrofitted RC beams. The authors found that strengthened specimens without internal steel stirrups ($\rho_s = 0$) exhibited a 37% loss in shear strength by doubling the beam's depth from 175 mm to 350 mm, whereas the loss was reduced to 14% after the addition of steel stirrups ($\rho_s = 0.37\%$). This confirms the findings of other researchers, as already observed on conventional RC beams, that the presence or increase in internal transverse steel ratio tends to reduce the size effect, but cannot eliminate it completely.

SIZE EFFECT OF RC BEAMS SHEAR-STRENGTHENED WITH EB-FRP

Investigations on size effect on RC beams strengthened in shear with EB-FRP are significantly fewer than those of conventional RC beams. Figure 10(a) illustrates the shear force at failure due to FRP, V_{FRP} , with increasing the beam's size for the studies conducted on specimens shear-strengthened with EB-FRP (Table 1). The results show that the contribution in the shear resistance due to FRP increased with "d" for the same series of tested specimens. This can be attributed to the fact that the increase in beam's height increases the effective bond and anchorage length of FRP composites, hence increasing their contribution to shear resistance. However, as shown in Figure 10(b), a decrease in the normalized shear strength was obtained with the increase in "d" for the same series of specimens, except for the study by Qu [4], confirming the existence of a size effect in shear for RC beams strengthened in shear with EB-FRP.

Figure 10: Size influence of RC beams shear-strengthened with EB-FRP: a) Shear force; b) Normalized shear strength

Deniaud and Cheng [3] carried out tests on two different sizes (400 and 600 mm depths) of T cross-section beams with internal transverse steel ($\rho_s = 0.1\%$). The specimens were shear-strengthened in shear with EB-GFRP sheets using U-wrap configuration in a single layer ($\rho_{FRP} = 2.6\%$). The authors revealed that the size of specimen significantly influences the FRP shear behavior of RC beams. In fact, the results showed a 27% loss in shear strength in the GFRP strengthened specimens with increasing the beam's size, whereas a 40% loss was obtained in the non-strengthened RC specimens. This indicates that the use of FRP for shear strengthening had a positive impact on the shear behavior of large scale RC beams by reducing the size effect.

Qu [4] carried out tests on three different sizes of rectangular beams (200, 400 and 600 mm depths). The specimens were shear-strengthened with EB-CFRP sheets using U-wrap configurations in one, two and three layers according to the increase in beam's size, while keeping the same ratio of FRP ($\rho_{FRP} = 0.13\%$). All tested specimens were without internal shear reinforcement. The results showed a negligible size effect due to the FRP strengthening system when comparing the smallest beam with the largest one. Indeed, an 11% gain in shear strength was obtained in the CFRP strengthened specimens compared to 14% gain in the non-strengthened ones. The authors found that the contribution to shear resistance due to FRP is divided into a direct contribution (V_{FRPd}) and an indirect contribution (V_{FRPi}). V_{FRPd} represents the summation of shear forces in FRP strips calculated based on the recorded strains, whereas V_{FRPi} represents the enhancement in FRP contribution to the shear resistance, due to the decrease in inclination of shear crack angles and the enhancement in aggregate interlock mechanism. The authors found that the direct contribution has little or no impact on the size effect, which is mainly attributed to the indirect shear contribution of FRP.

Leung [5] carried out tests on three different sizes of rectangular beams (180, 360 and 720 mm depths) with internal steel-stirrups ($\rho_s = 0.28\%$). The specimens were shear-strengthened with EB-CFRP sheets using U-wrap and full-wrap configurations; one, two and four layers of EB-CFRP were considered while doubling the beam's size, in order to keep the same FRP ratio ($\rho_{FRP} = 0.1\%$). The results revealed a 23% loss in shear strength for conventional RC specimens (non-strengthened) with increasing the beam's size from 180 to 720 mm. For comparison, a loss of 50% was obtained for the same series of specimens after strengthening in shear with U-wrap EB CFRP sheets, versus 23 % loss for the full-wrap strengthened specimens. This indicates the existence of a significant additional size effect due to the EB-FRP shear strengthening system using U-wrap configuration without anchorage, whereas no size effect was observed in the full-wrap system.

Bae [6] carried out tests on three different sizes of rectangular beams (370, 550 and 700 mm depths) without internal shear reinforcement. The specimens were shear-strengthened with EB-CFRP U-wrap sheets in one layer ($\rho_{FRP} = 0.05\%$). The results revealed the existence of an additional size effect of RC beams due to FRP shear strengthening system. In fact, a 27% loss in shear strength was obtained in CFRP strengthened specimens while increasing the beam's size from 370 to 700 mm, compared to an 18% loss in the non-strengthened specimens.

Bousselham and Chaallal [7] carried out tests on two different sizes of T-section beams (220 and 406 mm depths) with two ratios of internal transverse steel ($\rho_s = 0$ and 0.375%). For both sizes, the specimens were shear-strengthened with EB CFRP using U-wrap sheets in one and two layers ($\rho_{FRP} = 0.14$ and 0.28%), in order to evaluate the influence of FRP rigidity on the size effect. Figure 11 illustrates in histograms, for each series of tested RC T-beams, the loss in shear strength with increasing beam's size due to the addition of FRP and increase in FRP ratio. As shown, for specimens without internal shear reinforcement, the loss in strength increased from 30% in conventional (non-strengthened) specimens to 37% in specimens strengthened with one layer of CFRP to reach 45% in those with two layers while doubling the CFRP rigidity. In addition, for the same series of specimens, the loss in shear strength dropped to more than half with the addition of internal steel-stirrups (12% in non-strengthened specimens, 17% and 21% in strengthened specimens respectively with one and two layers), thus keeping the same rate of resistance loss. This indicates that an additional size effect exists due to the EB-CFRP shear strengthening system, which becomes more evident with the increase in CFRP rigidity.

Figure 11: Loss in shear strength with increasing beam size due to FRP

Nguyen-Minh and Rovňák [8] conducted two series of tests on RC rectangular beams with internal transverse steel ($\rho_s = 0.17\%$). The first series consisted of three sizes of specimens (200, 400 and 600 mm depths) strengthened in shear with EB-GFRP, whereas the second series consisted of pre-cracked specimens of three different sizes (250, 500 and 750 mm depths) shear-strengthened with EB-GFRP and EB-CFRP systems. In order to keep the same ratio of FRP ($\rho_{FRP} = 2.6\%$ for glass fibers and 2% for carbon fibers), all specimens were strengthened using U-wrap sheets in one, two and three layers of FRP with respect to the beam's size. The results showed a size effect due to EB-GFRP strengthening system in specimens of the first series; in fact, these specimens exhibited a 9% loss in shear strength by increasing the beam's size from 200 to 600 mm, compared to 14% gain in similar non-strengthened RC beams. However, no size effect was obtained in all pre-cracked specimens, neither in conventional (non-strengthened) RC beams nor in shear-strengthened one with GFRP or CFRP.

RESULTS SYNTHESIS AND RECOMMENDATIONS

The size effect in shear of conventional RC structures is well documented and several studies have evaluated the related major parameters, such as size of aggregates, ratio of longitudinal and transverse steel, concrete compressive strength and span to effective depth ratio. This contrasts with RC beams strengthened in shear with EB-FRP where very few studies have been conducted on the subject. Moreover, these few studies did not consider the influence of the above mentioned parameters on the strengthened beams, but instead they investigated solely the effect of the addition of FRP composites, except for ρ_s assessed by Bousselham and Chaallal [7]. The overall results showed an additional size effect associated with the EB-FRP composites; an increase in shear strength loss occurred in strengthened specimens with increasing "d" compared to non-strengthened ones, even if higher levels of shear forces were obtained, except for the study by Deniaud and Cheng [3], where the specimens showed a reduction in the size effect.

An interesting point about the influence of concrete compressive strength (f'_c) on the size effect of RC beams should be highlighted. By analysing the database, we noticed that the highest f'_c used in the specimens shearstrengthened with EB-FRP was less than 50 MPa compared to 100 MPa reached in the studies on size effect of conventional concrete beams. Also, among all the studies on shear strengthening with EB-FRP, none has examined the influence of f'_c on the size effect. However, as already observed, the size effect is much more pronounced at high resistance concrete beams (non-strengthened), and at the same time the increase in f'_c plays a major role in shear resistance gain due to FRP, V_{FRP} , especially when the failure mode is by FRP debonding. Li [38] conducted a series of direct shear bond tests to evaluate the effect of concrete strength on bond behavior of FRP/concrete interface; the results showed an additional gain of 76% in load-carrying capacity when f'_c increased from 27 to 61 MPa, where the specimens failed by CFRP debonding from concrete. This is attributed to the fact that the increase in f'_c provides an increase in concrete tensile stress, hence enhancing the bond at the interface FRP/concrete. In addition, increase in "d" results in shear force gain due to FRP by increasing the bonding area, which may thus have a positive impact on the size effect with higher f'_c . In order to understand further this behavior and due to lack of research studies on the subject, more investigations are needed on the size effect of RC beams shear-strengthened with EB-FRP with f'_c as the main study parameter.

Analysis of collected data revealed that the parameters of major influence on shear resistance, which may mitigate or amplify the size effect, converge towards the direct impact of diagonal shear cracks. It has been demonstrated in several studies, for geometrically similar RC beams, that the cracks remain similar with openings proportional to the beam's depth, hence linking the size effect and the cracking mechanism. This indicates that the control of shear cracks may diminish or even eliminate the size effect. As already seen in the study by Collins and Kuchma [24], the distribution of crack control longitudinal reinforcement along the entire beam's depth tends to suppress the size effect. Therefore, a good solution to reproduce this distribution could be the use of bidirectional FRP fibers for strengthening in shear. In fact, the fibers in the longitudinal direction of the axis will provide a significant enhancement in shear performance, which is similar and even better than that of the distribution of internal reinforcing bars because the fibers will intercept and control all the cracks along the entire depth of the section.

For RC beams shear-strengthened with EB-FRP, the authors considered different approaches to keep the same FRP ratio (ρ_{FRP}) with increasing "*d*", which may compromise the integrity of interpretation on size effect due to FRP. In fact, in the study by Bae [6], the increase in the amount of FRP was scaled with the width of FRP strips in one layer, while [3, 7] varied the FRP density while keeping the same number of layers for the same series of specimens. In addition, [4, 5, 8] increased the amount of FRP by increasing the number of layers. However, there are still outstanding issues that need to be investigated, such as: (i) the maximum number of CFRP plies that can be installed without exhibiting slippage or debonding, particularly on vertical surfaces where strengthening in shear is required; (ii) the effectiveness of shear strengthening with multilayer CFRP fabrics compared to one single layer (monolayer) of equivalent density, taking into account the premature debonding failure and the effect of CFRP thickness.

CONCLUSIONS

This paper focuses on the assessment of different parameters of major influence on the size effect in shear of RC beams, either reinforced with steel and FRP bars or shear-strengthened with EB-FRP. An extensive database from literature was developed on the subject with more than 470 test specimens from 48 experimental studies. The following conclusions can be drawn from the analysis and synthesis of the gathered data:

- 76% of available experimental data on size effect are based on specimens with *d* less than 700 mm. Moreover, just 6% of all studies corresponded to RC beams strengthened in shear with EB-FRP, in which 77% consisted of *d* less than 500 mm.
- The size effect in shear of RC beams is influenced by five major parameters: size of aggregates (a_g) , concrete compressive strength (f'_c) , longitudinal and transverse reinforcement $(\rho_w, \rho_{FRP} \text{ and } \rho_s)$, as well as

shear span-to-effective depth ratio (a/d). The size effect may be suppressed with increasing a_g provided that a good correlation with *d* is established. It can also be mitigated with the presence of steel stirrups ρ_s and with the distribution of ρ_w along the entire beam's depth. However, it is observed that the size effect is much more pronounced at high resistance concrete beams, as well as in deep beams compared to slender ones.

- The few studies conducted on RC beams shear-strengthened with EB-FRP investigated the behavior of specimens focusing solely on the effect of adding the FRP composites. The results revealed the existence of an additional size effect associated with FRP shear strengthening system using U-wrap configuration, whereas no size effect was observed in full-wrap system.
- None of the parameters of major influence on size effect were assessed by studies on shear strengthening with EB-FRP, except for the transverse steel (ρ_s) considered in only one study, in which the size effect was mitigated as noticed in conventional RC beams. Further research studies are needed to evaluate the influence of all other parameters on the size effect.
- Analysis of data on size effect showed that all parameters of major influence on shear resistance of RC beams converge towards the direct impact of crack openings. This indicates that the control of shear cracks may mitigate and even suppress the size effect.

ACKNOWLEDGMENTS

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec – Nature et technologie (FRQNT) through operating grants is gratefully acknowledged.

REFERENCES

[1] Kani GNJ. "How safe are our large reinforced concrete beams?". Proceedings of ACI Journal. 1967;64(3):128-41.

[2] Bažant ZP. "Fracturing truss model: Size effect in shear failure of reinforced concrete". Journal of engineering mechanics. 1997;123(12):1276-88.

[3] Deniaud C, Cheng JR. "Review of shear design methods for reinforced concrete beams strengthened with fibre reinforced polymer sheets". Canadian Journal of Civil Engineering. 2001;28(2):271-81.

[4] Qu Z, Lu X, Ye L. "Size effect of shear contribution of externally bonded FRP U-jackets for RC beams". In: International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005). Hong Kong, China 2005. p. 371-80.

[5] Leung CK, Chen Z, Lee S, Ng M, Xu M, Tang J. "Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips". Journal of Composites for Construction. 2007;11(5):487-96.

[6] Bae S-W, Tann BD, Belarbi A. "Size effect of reinforced concrete beams strengthened in shear with externally bonded CFRP sheets". In: Sixth international conference on FRP composites in civil engineering (CICE 2012). Rome, Italy 2012.

[7] Bousselham A, Chaallal O. "Experimental investigations on the influence of size on the performance of RC T-beams retrofitted in shear with CFRP fabrics". Engineering Structures. 2013;56:1070-9.

[8] Nguyen-Minh L, Rovňák M. "Size effect in uncracked and pre-cracked reinforced concrete beams shearstrengthened with composite jackets". Composites Part B: Engineering. 2015;78:361-76.

[9] Bažant ZP, Zuber B, Pijaudier-Cabot G. "Introduction aux effets d'échelle sur la résistance des structures": Hermes science publ., 2004.

[10] Bažant ZP, Planas J. "Fracture and size effect in concrete and other quasibrittle materials": CRC press, 1998.

[11] Syroka-Korol E, Tejchman J, Mróz Z. "FE analysis of size effects in reinforced concrete beams without shear reinforcement based on stochastic elasto-plasticity with non-local softening". Finite Elements in Analysis and Design. 2014;88:25-41.

[12] Zararis PD, Papadakis GC. "Diagonal shear failure and size effect in RC beams without web reinforcement". Journal of Structural Engineering. 2001;127(7):733-42.

[13] Reineck K-H, Kuchma DA. "Shear database for reinforced concrete members without shear reinforcement". ACI Structural Journal. 2003(2):240-9.

[14] Matta F, El-Sayed AK, Nanni A, Benmokrane B. "Size effect on concrete shear strength in beams reinforced with fiber-reinforced polymer bars". ACI Structural Journal. 2013;110(4):617-28.

[15] Godat A, Qu Z, Lu X, Labossiere P, Ye L, Neale KW. "Size effects for reinforced concrete beams strengthened in shear with CFRP strips". Journal of Composites for Construction. 2010;14(3):260-71.

[16] Swamy RN, Shamsuddin AQ. "Strength, Cracking and Deformation Similitude in Reinforced T-beams Under Bending and Shear". Proceedings of ACI Journal. 1971;68(3):187-95.

[17] Taylor H. "Shear stength of large beams". Journal of the Structural Division. 1972;98(St 11):2473-90.

[18] Chana P. "Some aspects of modelling the behaviour of reinforced concrete under shear loading"1981.

[19] Iguro M, Shioya T, Nojiri Y, Akiyama H. "Experimental studies on shear strength of large reinforced concrete beams under uniformly distributed load". Concrete Library International. 1985;5:137.

[20] Ghannoum WM. "Size effect on shear strength of reinforced concrete beams": McGill University Montréal, Canada, 1998.

[21] Fenwick R, Paulay T. "Mechanism of shear resistance of concrete beams". Journal of the Structural Division. 1968;94(10):2325-50.

[22] Chaallal O, Shahawy M, Hassan M. "Performance of reinforced concrete T-girders strengthened in shear with carbon fiber-reinforced polymer fabric". Structural Journal. 2002;99(3):335-43.

[23] Campana S. "Éléments en béton armé soumis à une combinaison de flexion, effort tranchant et forces de déviation". 2013.

[24] Collins MP, Kuchma D. "How safe are our large, lightly reinforced concrete beams, slabs, and footings?". ACI Structural Journal. 1999;96(4):482-91.

[25] Zakaria M, Ueda T, Wu Z, Meng L. "Experimental investigation on shear cracking behavior in reinforced concrete beams with shear reinforcement". Journal of Advanced Concrete Technology. 2009;7(1):79-96.

[26] Bentz EC, Massam L, Collins MP. "Shear strength of large concrete members with FRP reinforcement". Journal of Composites for Construction. 2010;14(6):637-46.

[27] Alam M, Hussein A. "Effect of member depth on shear strength of high-strength fiber-reinforced polymer-reinforced concrete beams". Journal of Composites for Construction. 2012;16(2):119-26.

[28] El-Sayed AK, Shuraim AB. "Size effect on shear resistance of high strength concrete deep beams". Materials and Structures. 2016;49(5):1871-82.

[29] Fujita M, Sato R, Matsumoto K, Takaki Y. "Size effect on shear strength of RC beams using HSC without shear reinforcement". Proceedings of Japan Society of Civil Engineers (JSCE). 2002;711(56):161-72.

[30] CSA S806-12. "Règles de calcul et de construction des structures de bâtiment contenant des polymères renforcés de fibres". Association canadienne de normalisation CAN/CSA Comité S806. Mississauga, Ontario2012. p. 206.

[31] Tan K, Lu H. "Shear behavior of large reinforced concrete deep beams and code comparisons". Structural Journal. 1999;96(5):836-46.

[32] Kotsovos M, Pavlovic M. "On the size-effect phenomenon in concrete structures". In: Fourth international conference of fracture mechanics of concrete and concrete structures (FraMCos-4). Lisse, Netherlands 2001. p. 705-11.

[33] Yu Q, Bažant ZP. "Can stirrups suppress size effect on shear strength of RC beams?". Journal of Structural Engineering. 2011;137(5):607-17.

[34] Minelli F, Conforti A, Cuenca E, Plizzari G. "Are steel fibres able to mitigate or eliminate size effect in shear?". Materials and Structures. 2014;47(3):459-73.

[35] Minelli F, Plizzari G, Vecchio F. "Influence of steel fibers on full-scale RC beams under shear loading". In: Sixth international conference of fracture mechanics of concrete and concrete structures (FraMCos-6). Catania, Italy 2007. p. 1523-31.

[36] Shoaib A, Lubell AS, Bindiganavile VS. "Size Effect in Shear for Steel Fiber-Reinforced Concrete Members without Stirrups". ACI Structural Journal. 2014;111(5):1081-90.

[37] ACI 318-14. "Building Code Requirements for Structural Concrete and Commentary". American Concrete Institute ACI Committee 318. Farmington Hills, MI2014. p. 520.

[38] Li W, Li J, Ren X, Leung CK, Xing F. "Coupling effect of concrete strength and bonding length on bond behaviors of fiber reinforced polymer–concrete interface". Journal of Reinforced Plastics and Composites. 2015:0731684415573816.

[39] Bažant ZP, Kazemi MT. "Size effect on diagonal shear failure of beams without stirrups". ACI Structural Journal. 1991;88(3):268-76.

[40] Walraven J, Lehwalter N. "Size effects in short beams loaded in shear". Structural Journal. 1994;91(5):585-93.

[41] Yang K-H, Chung H-S, Lee E-T, Eun H-C. "Shear characteristics of high-strength concrete deep beams without shear reinforcements". Engineering Structures. 2003;25(10):1343-52.

[42] Bentz EC, Buckley S. "Repeating a classic set of experiments on size effect in shear of members without stirrups". ACI Structural Journal. 2005;102(6):832-8.

[43] Sneed LH, Ramirez JA. "Influence of effective depth on shear strength of concrete beams-Experimental study". ACI Structural Journal. 2010;107(5):554-62.

[44] Zhang N, Tan K-H. "Size effect in RC deep beams: Experimental investigation and STM verification". Engineering Structures. 2007;29(12):3241-54.

[45] Yu L, Che Y, Zheng XF, Gong JX, Song YP. "Effect of beam depth and longitudinal reinforcement ratio on shear strength of RC beams". Advanced Materials Research. 2011;163-167:1460-5.

[46] Kim SW, Jeong CY, Lee JS, Kim KH. "Size effect in shear failure of reinforced concrete beams with recycled aggregate". Journal of Asian Architecture and Building Engineering. 2013;12(2):323-30.

[47] Yang K-H, Ashour AF. "Influence of section depth on the structural behaviour of reinforced concrete continuous deep beams". 2007.

[48] Yu L, Che Y, Song Y. "Shear Behavior of Large Reinforced Concrete Beams without Web Reinforcement". Advances in Structural Engineering. 2013;16(4):653-65.

[49] Arun M, Ramakrishnan S. "Size Effect on Shear Behavior of High Strength RC Slender Beams". Int J Res Eng Technol. 2014;3(08):113-8.

[50] Syroka-Korol E, Tejchman J. "Experimental investigations of size effect in reinforced concrete beams failing by shear". Engineering Structures. 2014;58:63-78.

[51] Birrcher DB, Tuchscherer RG, Huizinga M, Bayrak O. "Depth effect in deep beams". ACI Structural Journal. 2014;111(4):731-40.

[52] Alam M, Hussein A. "Size effect on shear strength of FRP reinforced concrete beams without stirrups". Journal of Composites for Construction. 2013;17(4):507-16.

[53] Matta F, Nanni A, Galati N, Mosele F. "Size effect on shear strength of concrete beams reinforced with FRP bars". In: Sixth International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCos-6). Catania, Italy 2007. p. 1077-84.

[54] Ashour AF, Kara IF. "Size effect on shear strength of FRP reinforced concrete beams". Composites Part B: Engineering. 2014;60:612-20.

[55] Mahmoud K, El-Salakawy E. "Size Effect on Shear Strength of Glass Fiber-Reinforced Polymer-Reinforced Concrete Continuous Beams". ACI Structural Journal. 2016;113(1):125-34.

ISSN 2349-0292 Impact Factor 2.675

APPENDIX A

Table A.1. Experimental database on size effect of RC beams reinforced with steel and FRP ba	ırs
PC hooms with rainforcing sto	al hare

	r				T.			KC Dea	ins with rel	Inorcing stee	Dars				1				T
Specimen		Geometry o	of beams			Properties o	f concrete		Results	Specimen	(Geometry o	of beams			Properties o	f concrete		Results
	Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	a _g (mm)	f' _с (МРа)	ρ _w (%)	ρ _s (%)	V _τ (kN)		Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	ag (mm)	f'c (MPa)	ρ _w (%)	ρ _s (%)	V⊤ (kN)
			1 - Leonl	nardt F,	Walther R	(1962) '							4 - Swa	my and	Shamsudd	in [16]			
D1/1	rect	70	50	3.0	15	35.8	1.71	0.00	7.4	M3N3/2	Т	57	51	1.5	6.35	43.4	0.43	0.00	28
D2/1	rect	140	100	3.0	15	35.9	1.66	0.00	21.6	M2N3/2	Т	86	76	1.5	9.5	35.9	0.43	0.00	46
D3/1	rect	210	150	3.0	15	37.1	1.62	0.00	47.3	M1N3/2	Т	171	152	1.5	19	40.0	0.43	0.00	213
D4/1	rect	280	200	3.0	15	34.0	1.67	0.00	75.6	M3N3	Т	57	51	3.0	6.35	42.1	0.43	0.00	11
C1	rect	150	100	3.0	30	37.7	1.33	0.00	22	M2N3	Т	86	76	3.0	9.5	44.5	0.43	0.00	22
C2	rect	300	150	3.0	30	37.7	1.33	0.00	66	M1N3	Т	171	152	3.0	19	41.4	0.43	0.00	87
C3	rect	450	200	3.0	30	37.7	1.33	0.00	104	M3N4	Т	57	51	4.0	6.35	42.1	0.43	0.00	8
C4	rect	600	225	3.0	30	37.7	1.33	0.00	155	M2N4	Т	86	76	4.0	9.5	41.4	0.43	0.00	18
				2 - I	(ani [1]					M1N4	Т	171	152	4.0	19	43.0	0.43	0.00	66
54	rect	136	152	1.0	19.1	26.7	2.76	0.00	158	M3W3/2	Т	57	51	1.5	6.35	34.8	0.43	0.61	17
88	rect	272	152	1.0	19.1	31.4	2.81	0.00	359	M2W3/2	Т	86	76	1.5	9.5	35.7	0.43	0.61	48
69	rect	544	152	1.0	19.1	27.4	2.67	0.00	585	M1W3/2	Т	171	152	1.5	19	34.5	0.43	0.61	164
46	rect	136	152	2.0	19.1	25.5	2.76	0.00	69	M3W3	Т	57	51	3.0	6.35	36.2	0.43	0.61	15
94	rect	272	152	2.0	19.1	25.3	2.78	0.00	110	M2W3	Т	86	76	3.0	9.5	33.2	0.43	0.61	32
61	rect	544	152	2.0	19.1	26.8	2.58	0.00	163	M1W3	Т	171	152	3.0	19	34.1	0.43	0.61	119
3041	rect	1088	152	2.0	19.1	26.9	2.73	0.00	326	M3W4	Т	57	51	4.0	6.35	39.0	0.43	0.61	13
41	rect	136	152	2.5	19.1	27.2	2.6	0.00	51	M2W4	Т	86	76	4.0	9.5	33.2	0.43	0.61	29
95	rect	272	152	2.5	19.1	25.3	2.75	0.00	73	M1W4	Т	171	152	4.0	19	37.6	0.43	0.61	118
65	rect	544	152	2.5	19.1	27.0	2.82	0.00	112	M3N3C	Т	57	51	3.0	6.35	41.0	0.43	0.00	9
3042	rect	1088	152	2.5	19.1	26.4	2.71	0.00	237	M2N3C	Т	86	76	3.0	6.35	41.0	0.43	0.00	23
55	rect	136	152	3.0	19.1	25.1	2.89	0.00	33	M3N3B	Т	57	51	3.0	9.5	43.4	0.43	0.00	13
97	rect	272	152	3.0	19.1	27.2	2.68	0.00	62	M2N3B	Т	86	76	3.0	9.5	43.4	0.43	0.00	22
71	rect	544	152	3.0	19.1	27.4	2.66	0.00	102	M1N3B	Т	171	152	3.0	9.5	39.2	0.43	0.00	82
3043	rect	1088	152	3.0	19.1	27.0	2.72	0.00	165	M2N3A	Т	86	76	3.0	19	43.0	0.43	0.00	26
52	rect	136	152	4.0	19.1	24.8	2.69	0.00	29	M1N3A	Т	171	152	3.0	19	43.0	0.43	0.00	79
96	rect	272	152	4.0	19.1	25.3	2.76	0.00	56	M1N3D	Т	171	152	3.0	38	31.0	0.43	0.00	82
63	rect	544	152	4.0	19.1	26.2	2.77	0.00	93					5 - Ta	ylor [17]				
3044	rect	1088	152	4.0	19.1	29.5	2.73	0.00	159	D3	rect	140	60	3.0	2.4	40.0	1.35	0.00	10.6
43	rect	136	152	6.0	19.1	28.0	2.73	0.00	29	C6	rect	232	100	3.0	2.4	36.0	1.35	0.00	27.5
81	rect	272	152	6.0	19.1	27.5	2.76	0.00	51	C2	rect	232	100	3.0	9	32.0	1.35	0.00	24
66	rect	544	152	6.0	19.1	26.4	2.75	0.00	91	B3	rect	465	200	3.0	9	40.0	1.35	0.00	85.3
				3 - Bhal	NS (1968)					B2	rect	465	200	3.0	19	31.0	1.35	0.00	87.3
B1	rect	297	240	3.0	-	22.8	1.29	0.00	70	B1	rect	465	200	3.0	38	34.0	1.35	0.00	104
B2	rect	600	240	3.0	-	29.1	1.28	0.00	117	A2	rect	930	400	3.0	19	31.8	1.35	0.00	328
B3	rect	900	240	3.0	-	27.1	1.28	0.00	162	A1	rect	930	400	3.0	38	36.4	1.35	0.00	358
B4	rect	1200	240	3.0	-	24.8	1.28	0.00	177				6 - 1	Walrav	en JC (1978	B) ¹			
B5	rect	600	240	3.0	-	26.2	0.64	0.00	104	A1	rect	125	200	3.0	-	27.5	0.83	0.00	30
B7	rect	900	240	3.0	-	26.8	0.64	0.00	135	A2	rect	420	200	3.0	-	27.4	0.74	0.00	71

http://www.gjaets.com/

ISSN 2349-0292 Impact Factor 2.675

Specimen	Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	a _g (mm)	f'c (MPa)	ρ _w (%)	ρ₅ (%)	V⊤ (kN)	Specimen	Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	a _g (mm)	f'c (MPa)	ρ _w (%)	ρ _s (%)	V⊤ (kN)
A3	rect	720	200	3.0	-	27.8	0.79	0.00	101	V022/3	rect	360	250	1.0	16	19.6	1.13	0.35	380
			7	- Char	na [18]					V511/3	rect	560	250	1.0	16	21.3	1.12	0.33	580
6.1	rect	42	23.5	3.0	2.4	35.8	1.8	0.00	2.14	V411/3	rect	760	250	1.0	16	19.8	1.07	0.33	665
4.1a	rect	106	60	3.0	5	30.9	1.78	0.00	9.9				12 -	Grimm	1 (1997) ²				
3.1a	rect	177	100	3.0	10	34.5	1.7	0.00	23.8	s1.1	rect	153	300	3.7	16	85.6	1.34	0.00	70
2.1a	rect	356	203	3.0	20	49.3	1.73	0.00	96	s2.2	rect	348	300	3.5	16	86.7	1.88	0.00	187
			8	3 - Igur	o [19]					s3.2	rect	718	300	3.7	16	89.0	1.72	0.00	259
1	rect	100	158	1.5	10	20.6	0.4	0.00	13.2	s1.3	rect	146	300	3.9	16	89.0	4.22	0.00	98.6
2	rect	200	158	1.5	10	19.7	0.4	0.00	26.6	s2.4	rect	328	300	3.8	16	89.4	3.76	0.00	230
3	rect	600	300	1.5	10	21.1	0.4	0.00	83.5	s3.4	rect	690	300	3.8	16	89.4	3.57	0.00	379
4	rect	1000	500	1.5	10	27.2	0.4	0.00	178				13 - 0	Ghann	oum [20]				
5	rect	1000	500	1.5	25	21.9	0.4	0.00	199	N90	rect	65	400	2.5	20	34.2	1.2	0.00	42.5
6	rect	2000	1000	1.5	25	28.5	0.4	0.00	698	N155	rect	128	400	2.5	20	34.2	1.2	0.00	84.6
7	rect	3000	1500	1.5	25	24.3	0.4	0.00	1413	N220	rect	190	400	2.5	20	34.2	1.2	0.00	104
			9 - Niv	va Y et	: al. (1987)	2				N350	rect	313	400	2.5	20	34.2	1.2	0.00	158
3	rect	1000	300	3.0	25	23.4	0.14	0.00	102	N485	rect	440	400	2.5	20	34.2	1.2	0.00	188
2	rect	2000	600	3.0	25	24.9	0.14	0.00	382	N960	rect	869	400	2.5	20	34.2	1.2	0.00	367
1	rect	2000	600	3.0	25	25.8	0.28	0.00	402	N90	rect	65	400	2.5	20	34.2	2	0.00	76
			10 - Baža	ant an	d Kazemi [39]				N155	rect	128	400	2.5	20	34.2	2	0.00	112
1	rect	21	38	3.0	4.8	46.2	1.62	0.00	2	N220	rect	190	400	2.5	20	34.2	2	0.00	123
2	rect	41	38	3.0	4.8	46.2	1.62	0.00	2.7	N350	rect	313	400	2.5	20	34.2	2	0.00	179
3	rect	83	38	3.0	4.8	46.2	1.62	0.00	4.5	N485	rect	440	400	2.5	20	34.2	2	0.00	215
4	rect	165	38	3.0	4.8	46.2	1.62	0.00	7.3	N960	rect	869	400	2.5	20	34.2	2	0.00	386
5	rect	330	38	3.0	4.8	46.2	1.62	0.00	9.3	H90	rect	65	400	2.5	10	58.6	1.2	0.00	52
		1:	1- Walrav	en and	d Lehwalte	er [40]				H155	rect	128	400	2.5	10	58.6	1.2	0.00	77
A1	rect	125	200	3.0	16	34.2	0.83	0.00	30	H220	rect	190	400	2.5	10	58.6	1.2	0.00	106
A2	rect	420	200	3.0	16	34.2	0.74	0.00	70.6	H350	rect	313	400	2.5	10	58.6	1.2	0.00	157
A3	rect	720	200	3.0	16	34.8	0.79	0.00	101	H485	rect	440	400	2.5	10	58.6	1.2	0.00	199
B1	rect	125	200	3.0	16	37.6	0.83	0.00	40	H960	rect	869	400	2.5	10	58.6	1.2	0.00	317
B2	rect	420	200	3.0	16	37.6	0.74	0.00	60.5	H90	rect	65	400	2.5	10	58.6	2	0.00	//.4
B3	rect	/20	200	3.0	16	34.7	0.79	0.00	/9.2	H155	rect	128	400	2.5	10	58.6	2	0.00	105
V/11	rect	160	250	1.0	16	18.1	1.52	0.00	165	H220	rect	190	400	2.5	10	58.6	2	0.00	135
V022	rect	360	250	1.0	10	19.9	1.13	0.00	270	H350	rect	313	400	2.5	10	58.0	2	0.00	190
V511	rect	560	250	1.0	16	19.8	1.12	0.00	350	H485	rect	440	400	2.5	10	58.0	2	0.00	199
V411	rect	740	250	1.0	10	19.4	1.10	0.00	305	H96U	rect	809	400	2.5	1U al- 6 (1000	58.0 2	Z	0.00	337
VZII	rect	930	250	1.0	10	20.0	1.08	0.00	4/3	DN12	root	110	200	igornia	ак 5 (1998 10	<i>))</i> 25.2	0.01	0.00	40
V/11/4	rect	700	250	1.0	16	19.5	1.50	0.13	207	BN12	rect	110	300	3.1	10	35.Z	0.91	0.00	40 70
V/11/4	rect	300	250	1.0	10	10.2	1.13	0.13	317	BINZ5	rect	225	300	3.0	10	35.Z	0.89	0.00	/3
VJ11/4	rect	200 760	250	1.0	10	17.0	1.12	0.14	405	BNSU BN100	rect	450	200	3.U 2 0	10	35.2 25.2	0.81	0.00	102
V411/4 \/711/A	rect	160	250	1.0	16	10.6	1.07	0.17	407 320		rect	923 150	300	2.9 2 0	10	55.Z Q/ 1	0.70	0.00	132
V/11/4	reci	100	250	1.0	10	19.0	1.50	0.35	380	впро	rect	450	300	3.0	10	94.1	0.61	0.00	132

http://www.gjaets.com/

ISSN 2349-0292 Impact Factor 2.675

Specimen	Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	a _g (mm)	f'c (MPa)	ρ _w (%)	ρ₅ (%)	V⊤ (kN)	Specimen	Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	a _g (mm)	f'c (MPa)	ρ _w (%)	ρ₅ (%)	V τ (kN)
BH100	rect	925	300	2.9	10	94.1	0.76	0.00	193				17 - Kotso	ovos and	l Pavlovic	[32]			
			15 - Coll	ins and	Kuchma [24]				D1	rect	70	50	3.0	-	38.0	1.62	0.00	7
BN12	rect	110	300	3.1	10	37.2	0.91	0.00	40	D2	rect	140	100	3.0	-	38.2	1.62	0.00	22
BN25	rect	225	300	3.0	10	37.2	0.89	0.00	73	D3	rect	210	150	3.0	-	39.5	1.62	0.00	45
BN50	rect	450	300	3.0	10	37.2	0.81	0.00	132	D4	rect	280	200	3.0	-	36.1	1.62	0.00	74
BN100	rect	925	300	2.9	10	37.2	0.76	0.00	192	C1	rect	150	100	3.0	-	40.0	1.34	0.00	22
BND25	rect	225	300	3.0	10	37.2	1.31	0.00	112	C2	rect	300	150	3.0	-	40.0	1.34	0.00	66
BND50	rect	450	300	3.0	10	37.2	1.11	0.00	163	C3	rect	450	200	3.0	-	40.0	1.34	0.00	101
BND100	rect	925	300	2.9	10	37.2	1.05	0.00	258	C4	rect	600	225	3.0	-	40.0	1.34	0.00	155
BH25	rect	225	300	3.0	10	98.8	0.89	0.00	85	D1s	rect	70	50	3.0	-	38.0	1.62	0.25	8
BH50	rect	450	300	3.0	10	98.8	0.81	0.00	132	D2s	rect	140	100	3.0	-	38.2	1.62	0.25	29
BH100	rect	925	300	2.9	10	98.8	0.76	0.00	193	D3s	rect	210	150	3.0	-	39.5	1.62	0.25	63
BHD25	rect	225	300	3.0	10	98.8	1.31	0.00	111	D4s	rect	280	200	3.0	-	36.1	1.62	0.25	117
BHD50	rect	450	300	3.0	10	98.8	1.11	0.00	193	C1s	rect	150	100	3.0	-	40.0	1.34	0.17	32
BHD100	rect	925	300	2.9	10	98.8	1.05	0.00	278	C2s	rect	300	150	3.0	-	40.0	1.34	0.17	84
SE50A-45	rect	459	169	2.7	10	52.5	1.03	0	69	C3s	rect	450	200	3.0	-	40.0	1.34	0.17	192
SE100A-45	rect	920	295	2.5	10	50	1.03	0	201	C4s	rect	600	225	3	-	40	1.34	0.17	270
SE50B-45	rect	459	169	2.7	10	52.5	1.16	0	87				1	8 - Fujita	a [29]				
SE100B-45	rect	920	295	2.5	10	50	1.36	0	281	L-25-3	rect	250	150	3.0	20	36.4	1.53	0.00	56
SE50A-M-69	rect	459	169	2.7	10	74	1.03	0.653	139	L-50-3	rect	500	150	3.0	20	36.4	1.53	0.00	79
SE100A-M-69	rect	920	295	2.5	10	71	1.03	0.804	516	L-100-3	rect	1000	350	3.0	20	35.7	1.36	0.00	319
SE50B-M-69	rect	459	169	2.7	10	74	1.16	0.653	152	M-25-3	rect	250	150	3.0	20	51.9	1.53	0.00	65
SE100B-M-69	rect	920	295	2.5	10	75	1.36	0.804	583	M-50-3	rect	500	150	3.0	20	51.9	1.53	0.00	113
SE50A-83	rect	459	169	2.7	10	91	1.03	0	73	M-100-3	rect	1000	350	3.0	20	53.0	1.36	0.00	340
SE100A-83	rect	920	295	2.5	10	86	1.03	0	184	U-25-3	rect	250	150	3.0	20	92.9	1.53	0.00	47
SE50B-83	rect	459	169	2.7	10	91	1.16	0	101	U-50-3	rect	500	150	3.0	20	102.0	1.53	0.00	86
SE100B-83	rect	920	295	2.5	10	86	1.36	0	365	U-100-3	rect	1000	350	3.0	20	103.0	1.36	0.00	280
			16 -	Tan an	d Lu (31)								1	19 - Yang	g [41]				
1-500/0.50	rect	444	140	0.6	-	49.1	2.60	0.00	850	L5-40	rect	355	160	0.6	19	31.4	1	0.00	447
2-1000/0.50	rect	884	140	0.6	-	31.2	2.60	0.00	875	L5-60	rect	555	160	0.5	19	31.4	0.98	0.00	535
3-1400/0.50	rect	1251	140	0.6	-	32.8	2.60	0.00	1175	L5-75	rect	685	160	0.6	19	31.4	1	0.00	597
4-1750/0.50	rect	1559	140	0.6	-	42.6	2.60	0.00	1636	L5-100	rect	935	160	0.5	19	31.4	0.9	0.00	582
1-500/0.75	rect	444	140	0.8	-	42.5	2.60	0.00	700	L10-40	rect	355	160	1.1	19	31.4	1	0.00	312
2-1000/0.75	rect	884	140	0.8	-	32.7	2.60	0.00	650	L10-60	rect	555	160	1.1	19	31.4	0.98	0.00	375
3-1400/0.75	rect	1251	140	0.8	-	36.2	2.60	0.00	950	L10-75	rect	685	160	1.1	19	31.4	1	0.00	330
4-1750/0.75	rect	1559	140	0.8	-	40.4	2.60	0.00	1240	L10-100	rect	935	160	1.1	19	31.4	0.9	0.00	544
1-500/1.00	rect	444	140	1.1	-	37.4	2.60	0.00	570	UH5-40	rect	355	160	0.6	19	78.5	1	0.00	733
2-1000/1.00	rect	884	140	1.1	-	30.8	2.60	0.00	435	UH5-60	rect	555	160	0.5	19	78.5	0.98	0.00	823
3-1400/1.00	rect	1251	140	1.1	-	35.3	2.60	0.00	800	UH5-75	rect	685	160	0.6	19	78.5	1	0.00	1010
4-1750/1.00	rect	1559	140	1.1	-	44.8	2.60	0.00	1000	UH5-100	rect	935	160	0.5	19	78.5	0.9	0.00	1029

ISSN 2349-0292 Impact Factor 2.675

Specimen	Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	a _g (mm)	f'c (MPa)	ρ _w (%)	ρ₅ (%)	V⊤ (kN)	Specimen	Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	a _g (mm)	f'。(MPa)	ρ _w (%)	ρ₅ (%)	V _τ (kN)
UH10-40	rect	355	160	1.1	19	78.5	1	0.00	499				23	3 - Zaka	ria [25]				
UH10-60	rect	555	160	1.1	19	78.5	0.98	0.00	573	A1 left	rect	160	200	2.0	25	40.0	2.86	0.72	171
UH10-75	rect	685	160	1.1	19	78.5	1	0.00	361	A2 left	rect	280	200	2.0	25	40.0	2.83	0.72	282
UH10-100	rect	935	160	1.1	19	78.5	0.9	0.00	769	A3 left	rect	432	200	2.0	25	40.0	2.84	0.72	432
			20 - Bei	ntz and	d Buckley [4	12]				A4 left	rect	669	200	2.0	25	40.0	2.84	0.72	718
SBB1.1	rect	84	104	2.9	10	35.6	1.63	0.00	14				24 - Sne	ed and	Ramirez [4	43]			
SBB2.1	rect	168	106	2.9	10	34.3	1.59	0.00	29	1-1	rect	232	305	3.0	9.5	66.1	1.2	0.00	131
SBB3.1	rect	333	105	3.0	10	36.1	1.55	0.00	42	1-2	rect	530	306	3.0	9.5	66.1	1.25	0.00	140
SBB1.2	rect	84	105	2.9	10	35.6	1.61	0.00	19	1-3	rect	681	305	3.0	9.5	65.0	1.24	0.00	148
SBB2.2	rect	168	105	2.9	10	34.3	1.61	0.00	30	1-4	rect	822	306	3.0	9.5	74.8	1.3	0.00	168
SBB3.2	rect	333	101	3.0	10	36.1	1.61	0.00	41	2-1	rect	233	203	3.0	9.5	68.6	1.26	0.00	57
SBB1.3	rect	84	104	2.9	10	35.6	1.63	0.00	15	2-2	rect	529	408	3.0	9.5	64.8	1.2	0.00	156
SBB2.3	rect	166	106	3.0	10	34.3	1.61	0.00	30	2-3	rect	684	508	3.0	9.5	68.1	1.3	0.00	262
SBB3.3	rect	333	101	3.0	10	36.1	1.61	0.00	43	2-4	rect	822	613	3.0	9.5	72.9	1.3	0.00	353
			21 - Z	hang a	and Tan [44]								25 - Yu	[45]				
1DB35bw	rect	313	80	1.1	10	25.9	1.25	0.40	100	B5N	rect	426	250	2.6	19	49.6	1.15	0.00	172
1DB50bw	rect	454	115	1.1	10	27.4	1.28	0.39	187	B6N	rect	524	298	2.6	19	49.6	1.18	0.00	196
1DB70bw	rect	642	160	1.1	10	28.3	1.22	0.45	427	B8N	rect	690	299	2.7	19	43.7	1.19	0.00	241
1DB100bw	rect	904	230	1.1	10	28.7	1.2	0.41	775	B10N	rect	902	310	2.5	19	54.2	1.1	0.00	323
2DB35	rect	314	80	1.1	10	27.4	1.25	0.00	85	B12N	rect	1098	605	2.5	19	54.2	1.11	0.00	694
2DB50	rect	459	80	1.1	10	32.4	1.15	0.00	136	B10L	rect	896	308	2.5	19	54.2	0.67	0.00	201
2DB70	rect	650	80	1.1	10	24.8	1.28	0.00	156					26 - Kin	n [46]				
2DB100	rect	926	80	1.1	10	30.6	1.26	0.00	242	NA-S2	rect	300	200	2.5	25	31.8	1.9	0.00	76
3DB35b	rect	314	80	1.1	10	27.4	1.25	0.00	85	NA-M2	rect	450	200	2.5	25	31.8	1.9	0.00	107
3DB50b	rect	454	115	1.1	10	28.3	1.28	0.00	167	NA-L2	rect	600	200	2.5	25	31.8	1.9	0.00	126
3DB70b	rect	642	160	1.1	10	28.7	1.22	0.00	361	NA-M3	rect	450	300	2.5	25	31.8	1.9	0.00	157
3DB100b	rect	904	230	1.1	10	29.3	1.2	0.00	672	NA-L4	rect	600	400	2.5	25	31.8	1.9	0.00	256
			22 - Ya	ng and	d Ashour [4	7]				RH-S2	rect	300	200	2.5	25	32.6	1.9	0.00	61
L5-40	rect	355	160	0.6	25	32.4	1	0.00	405	RH-M2	rect	450	200	2.5	25	32.6	1.9	0.00	109
L5-60	rect	555	160	0.5	25	32.4	0.97	0.00	456	RH-L2	rect	600	200	2.5	25	32.6	1.9	0.00	126
L5-72	rect	653	160	0.6	25	32.4	1.1	0.00	492	RH-M3	rect	450	300	2.5	25	32.6	1.9	0.00	154
L10-40	rect	355	160	1.1	25	32.1	1	0.00	201	RH-L4	rect	600	400	2.5	25	32.6	1.9	0.00	262
L10-60	rect	555	160	1.1	25	32.1	0.97	0.00	262	RF-S2	rect	300	200	2.5	25	34.9	1.9	0.00	73
L10-72	rect	653	160	1.1	25	32.1	1.1	0.00	300	RF-M2	rect	450	200	2.5	25	34.9	1.9	0.00	96
H6-40	rect	355	160	0.7	25	65.1	1	0.00	590	RF-L2	rect	600	200	2.5	25	34.9	1.9	0.00	125
H6-60	rect	555	160	0.6	25	65.1	0.97	0.00	634	RF-M3	rect	450	300	2.5	25	34.9	1.9	0.00	160
H6-72	rect	653	160	0.7	25	65.1	1.1	0.00	698	RF-L4	rect	600	400	2.5	25	34.9	1.9	0.00	257
H10-40	rect	355	160	1.1	25	67.5	1	0.00	335					27 - Yu	[48]				
H10-60	rect	555	160	1.1	25	68.2	0.97	0.00	372	B5N	rect	426	250	2.6	-	39.2	1.15	0.00	154
H10-72	rect	653	160	1.1	25	67.5	1.1	0.00	392	B6N	rect	524	298	2.6	-	39.2	1.18	0.00	180

ISSN 2349-0292 Impact Factor 2.675

			4				-	-	14	1	1		1.			(1		_	
Specimen	Section	a	D	a/d	a _g mm	f'c MPa	ρ_w	ρ_s		Specimen	Section	a	D	a/d	a _g	J c MD~	ρ_w	ρ_s	
DQN	roct	690	200	27		24 5	1 10	(//)	(KIV) 225	P250 1 75	roct	202	150	1.0	20	70.1	(70)	(%)	200
DOIN DOIN	roct	0.00	299	2.7	-	120	1.19	0.00	200	B550-1-75	roct	293 410	150	1.0	20	70.1	1.4	0.00	111
DIUN	rect	1000	510	2.5	-	42.0	1.1	0.00	299	B300-1-75	rect	419	150	1.0	20	70.1	1.47	0.00	441
BIZN B101	rect	1098	200	2.5	-	42.8	1.11	0.00	5/1	B/00-1-75	rect	015	150	1.0	20	70.1	1.44	0.00	//I 010
DIUL	Tect	390	506	2.5	-	42.0	0.07	0.00	1/1	B1000-1-75	Tett	910	150	1.0	20	70.1	1.47	0.00	810
MAND1		28 - A		Amaki	isnnan [49]	2 70	0.24	200	DC 50		455	200	32-1		25.7	1.04	0.00	111
	rect	400	150	2.6	-	48.8	2.78	0.34	269	PC-50	rect	455	200	2.5	20	25.7	1.04	0.00	111
IVINR2	rect	450	150	2.6	-	48.8	2.78	0.30	255	PC-100	rect	910	200	2.5	20	25.7	1.03	0.00	195
MINR3	rect	500	150	2.6	-	48.8	2.78	0.27	193	PC-100	rect	910	200	2.5	20	55.0	1.03	0.00	207
NNR1	rect	400	150	2.6	-	37.6	3.43	0.34	265	MSR-501	rect	455	200	2.5	20	25.7	1.04	0.08	1/6
NNR2	rect	450	150	2.6	-	37.6	3.43	0.30	234	MSR-100	rect	910	200	2.5	20	25.7	1.03	0.04	329
NNR3	rect	500	150	2.6	-	48.8	3.43	0.27	193	MSR-100	rect	910	200	2.5	20	55.0	1.03	0.04	451
ONR1	rect	400	150	2.6	-	37.6	2.78	0.37	269	FRC-50 1	rect	455	200	2.5	20	25.7	1.04	SFRC 20kg/m3	197
ONR2	rect	450	150	2.6	-	37.6	2.78	0.34	250	FRC-100	rect	910	200	2.5	20	25.7	1.03	SFRC 20kg/m3	258
ONR3	rect	500	150	2.6	-	37.6	2.78	0.30	208	FRC-100	rect	910	200	2.5	20	55.0	1.03	SFRC 20kg/m3	339
		29 - Syre	oka-Koro	ol and T	ejchman	[50]								33 - I	Minelli [34]				
SL20	rect	160	200	3.0	16	-	1	0.00	46	H500 PC	rect	440	250	3.0	16	38.7	1.12	0.00	116
SL40	rect	360	200	3.0	16	-	1	0.00	86	H1000PC	rect	940	250	3.0	16	32.1	1.07	0.00	188
SL80	rect	750	200	3.0	16	-	1	0.00	132	H1500 PC	rect	1440	250	3.0	16	33.1	1.01	0.00	211
SH22	rect	180	200	1.0	16	-	0.63	0.00	170	H500 FRC50	rect	440	250	3.0	16	38.7	1.12	SFRC 50kg/m3	240
SH40	rect	360	200	1.0	16	-	0.63	0.00	215	H1000 FRC50	rect	940	250	3.0	16	32.1	1.07	SFRC 50kg/m3	272
SH78	rect	720	200	1.0	16	-	0.63	0.00	257	H1500 FRC50	rect	1440	250	3.0	16	33.1	1.01	SFRC 50kg/m3	484
			30 - Bi	rrcher	[51]					H500 FRC75	rect	440	250	3.0	16	38.7	1.12	SFRC 75kg/m3	235
IV-2123-1.2-02	rect	495	533	1.2	19	31.9	2.3	0.17	2631	H1000 FRC 75	rect	940	250	3.0	16	32.1	1.07	SFRC 75kg/m3	351
III-1.2-02	rect	980	533	1.2	19	28.2	2.3	0.19	3760	H1500 FRC 75	rect	1440	250	3.0	16	33.1	1.01	SFRC 75kg/m3	554
IV-2175-1.2-02	rect	1750	533	1.2	19	34.5	2.3	0.21	5436					34 -	Shoaib [36]				
IV-2123-1.85-03	rect	495	533	1.9	19	28.7	2.3	0.30	1462	N31	rect	258	310	3.0	10	23.0	2.5	1.00	211
III-1.85-02b	rect	980	533	1.8	19	22.7	2.3	0.19	2083	N61	rect	531	300	3.0	10	23.0	1.88	1.00	252
IV-2175-1.85-02	rect	1750	533	1.9	19	34.0	2.3	0.19	3391	N10-1	rect	923	300	3.0	10	41.0	1.44	1.00	492
IV-2123-2.5-02	rect	495	533	2.5	19	31.5	2.3	0.17	716	N32	rect	240	310	3.0	10	41.0	4.03	1.00	281
111-2.5-02	rect	980	533	2.5	19	31.9	2.3	0.19	1324	N62	rect	523	300	3.0	10	23.0	2.55	1.00	242
IV-2175-2.5-02	rect	1750	533	2.5	19	34.5	2.3	0.21	2270	N10-2	rect	920	300	3.0	10	41.0	2.03	1.00	497
		31 - 1	-I-Saved	and Sh	uraim [2	81				H31	rect	258	310	3.0	10	41.0	2.5	1.00	278
B350-1-30	rect	293	150	1.0	20	26.1	14	0.00	204	H61	rect	531	300	3.0	10	41.0	1.88	1.00	423
B500-1-30	rect	110	150	1.0	20	26.1	1 /7	0.00	204	H10-1	rect	073	300	3.0	10	80.0	1 1/	1.00	646
B700-1-30	rect	615	150	1.0	20	26.1	1 1/	0.00	153	H32	rect	240	310	3.0	10	80.0	1.44	1.00	458
B1000-1-30	rect	01J 010	150	1.0	20	26.1	1.44	0.00	546	H62	rect	523	300	3.0	10	41 0	2 55	1.00	430
B1000-1-30	roct	202	150	1.0	20	20.1 E2.0	1.47	0.00	290	H10.2	roct	020	200	2.0	10	41.0	2.55	1.00	611
B200-1-22	roct	295 /10	150	1.0	20	52.0	1.4	0.00	300 416	1110-2	TELL	520	300	3.0	10	00.0	2.05	1.00	044
D300-1-33	rect	419 615	150	1.0	20	55.9	1.47	0.00	410 E00										
B/UU-1-55	rect	010	150	1.0	20	53.9	1.44	0.00	590										
B1000-1-55	rect	910	150	1.0	20	53.9	1.4/	0.00	/43										

ISSN 2349-0292 Impact Factor 2.675

								RC bear	ms with rei	nforcing FRP b	oars								
<u>En e sim en</u>	G	eometry o	of beams			Properties of	concrete		Results	Creative	G	eometry c	of beams			Properties of	concrete		Results
specimen	Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	a _g (mm)	f'。(MPa)	ρ _{FRP} (%)	ρ _s (%)	V _τ (kN)	specimen	Section	<i>d (</i> mm)	<i>b (</i> mm)	a/d	a _g (mm)	f'。(MPa)	ρ _{FRP} (%)	ρ₅ (%)	V _τ (kN)
			35 -	Massa	m L (2001) 3							40 - A	lam aı	nd Hussein	[52]			
LB/2/0.5/0	rect	194	450	3.9	10	35	0.12	0.00	54	S-350	rect	310	250	2.5	20	37.4	0.90	0.00	84
LB/4/0.5/0	rect	438	450	3.5	10	35	0.10	0.00	87	S-500	rect	458	250	2.5	20	42.4	0.87	0.00	111
LB/2/0.5/0	rect	938	450	3.2	10	46	0.09	0.00	135	S-650	rect	608	300	2.5	20	49.3	0.88	0.00	156
LB/2/2/0	rect	188	450	4.1	10	35	0.47	0.00	74	S-800	rect	758	300	2.4	20	41.8	0.88	0.00	200
LB/4/2/0	rect	504	450	3.8	10	35	0.44	0.00	138	C-350	rect	310	250	2.5	20	44.7	0.42	0.00	65
LB/8/2/0	rect	860	450	3.6	10	36	0.41	0.00	231	C-500	rect	460	250	2.5	20	34.5	0.45	0.00	74
				36 - M	atta [53]					C-650	rect	594	300	2.5	20	42.4	0.43	0.00	113
I-1	rect	883	457	3.1.	-	38.8	0.59	0.22	123	C-800	rect	744	300	2.4	20	41.8	0.40	0.00	139
II-1	rect	883	914	3.1	-	29	0.59	0.58	288	G-350	rect	305	250	2.5	20	39.8	0.86	0.00	61
I-2	rect	883	457	3.1	-	35.4	0.59	0.58	171	G-500	rect	440	250	2.5	20	37.4	0.90	0.00	77
II-2	rect	880	914	3.1	-	31.5	0.89	0.58	431	G-650	rect	584	300	2.5	20	37	0.91	0.00	104
				37 - Be	entz [26]					G-800	rect	734	300	2.4	20	41.8	0.90	0.00	129
S05-0	rect	194	450	3.9	10	35	0.66	0.00	55				41 - /	Ashou	r and Kara	[54]			
M05-0	rect	438	450	3.5	10	35	0.55	0.00	86	B-200-2	rect	176	200	5.9	-	29	0.25	0.00	18
L05-0	rect	937	450	3.3	10	46	0.51	0.00	135	B-300-2	rect	276	200	3.6	-	35	0.16	0.00	33
L05-1	rect	937	450	3.3	10	46	0.51	0.71	237	B-400-2	rect	376	200	2.7	-	27	0.12	0.00	33
L05-2	rect	937	450	3.3	10	49	0.51	1.42	246	B-200-4	rect	176	200	5.9	-	29	0.50	0.00	21
S20-0	rect	188	450	4.1	10	35	2.54	0.00	74	B-300-4	rect	276	200	3.6	-	35	0.32	0.00	33
M20-0	rect	405	450	3.8	10	35	2.36	0.00	138	B-400-4	rect	376	200	2.7	-	27	0.24	0.00	36
L20-0	rect	857	450	3.6	10	36	2.23	0.00	232				42 - Mahn	noud a	nd El-Salak	awy [55]			
M20-1	rect	405	450	3.8	10	35	2.36	0.71	154	GN-0.8-S	rect	250	200	3	19	39	0.79	0.00	36
L20-1	rect	857	450	3.6	10	36	2.23	0.71	500	GN-0.8-M	rect	500	200	3	19	39	0.79	0.00	64
L20-2	rect	857	450	3.6	10	42	2.23	1.42	690	GN-0.8-L	rect	750	200	3	19	39	0.76	0.00	93
			38 - A	lam an	d Hussein	[27]				GN-1.2-S	rect	250	200	3	19	39	1.18	0.00	52
G-350-70	rect	291	250	2.5	20	65.3	0.87	0.00	76	GN-1.2-M	rect	500	200	3	19	44	1.18	0.00	91
G-500-70	rect	442	250	2.5	20	74.2	1.25	0.00	116	GN-1.2-L	rect	750	200	3	19	39	1.14	0.00	99
G-650-70	rect	578	300	2.5	20	74.2	1.37	0.00	155	GH-0.8-S	rect	250	200	3	19	72	0.79	0.00	43
C-350-70	rect	310	250	2.5	20	65.3	0.42	0.00	72	GH-0.8-M	rect	500	200	3	19	70	0.79	0.00	56
C-500-70	rect	449	250	2.5	20	74.2	0.69	0.00	100	GH-0.8-L	rect	750	200	3	19	77	0.76	0.00	74
C-650-70	rect	594	300	2.5	20	74.2	0.65	0.00	146	GH-1.2-S	rect	250	200	3	19	72	1.18	0.00	50
				39 - M	atta [14]					GH-1.2-M	rect	500	200	3	19	70	1.18	0.00	87
S3-0.12-2A	rect	292	114	3.1	19	32.1	0.13	0.00	18	GH-1.2-L	rect	750	200	3	19	71	1.14	0.00	101
S1-0.12-2B	rect	883	457	3.1	19	29.6	0.12	0.00	151										
S3-0.24-2B	rect	292	114	3.1	19	40.6	0.28	0.00	21										
S1-0.24-2B	rect	880	457	3.1	19	30.7	0.24	0.00	213										

Note : The number of specimens shown in the table represents tests that are deemed valid. unambiguous and non-repetitive. selected solely for an accurate comparison for the size effect; Results are taken from the study by: ¹Zararis and Papadakis [12], ²Reineck and Kuchma [13], ³Matta [14]; The study by Godat, Qu [15] is a numerical modelling of the specimens tested by Qu, Lu [4]

	Geo	metry o	of beam		Prop	erties of	f concr	ete		Prope	rties of	FRP		Exp Re	sult (KN)
Specimen	Section	d (mm)	b (mm)	a/d	a_g	f'c	ρ _w (%)	ρ _s	Fiber	Configu	iration	Layer	ρ _{FRP} (%)	V _{FRP}	Vτ
		(mm)	(11111)		43	- Denia	ud and	d Chen	g [3]				(//)		
T4NS	Т	330	140	3	-	29	2.30	0.00		-	-	-	-	-	115
T6NS	т	530	140	2.8	-	44	2.70	0.00	-	-	-	-	-	-	110
T4S4	т	330	140	3	-	29	2.30	0.10	-	-	-	-	-	-	157
T6S4	Т	530	140	2.8	-	44	2.70	0.10	-	-	-	-	-	-	188
T4S4-G90	Т	330	140	3	-	29	2.30	0.10	G	Cont	en U	1	2.60	49	206
T6S4-G90	Т	530	140	2.8	-	44	2.70	0.10	G	Cont	en U	1	2.60	110	297
						44	1 - Qu	[4]							
RC1	Rect	166	100	2	30	51.2	4.10	0.00	-	-	-	-	-	-	80
RC2	Rect	330	200	2	30	49.7	4.50	0.00	-	-	-	-	-	-	355
RC3	Rect	498	300	2	30	50.5	4.20	0.00	-	-	-	-	-	-	813
U4	Rect	166	100	2	30	51.2	4.10	0.00	C	strips	en U	1	0.13	22	101
05	Rect	330	200	2	30	51.2	4.50	0.00	C	strips	en U	2	0.13	50	405
06	Rect	498	300	2	30	51	4.20	0.00	L	strips	en U	3	0.13	196	1009
SB-C	Roct	155	75	25		27 /	5 40	0.28							/11
MB-C	Rect	305	150	2.5	-	27.4	1 <u>4</u> 0	0.28	-	-	-	-	-	-	150
IB-C	Rect	660	300	2.5	-	27.4	4 10	0.20	_	_	_	-	_	_	538
SB-U1	Rect	155	75	2.5	-	27.4	5 40	0.20	C	strins	en II	1	0 10	24	65
MB-U1	Rect	305	150	2.5	-	27.4	4.40	0.28	C	strips	en U	2	0.10	5	155
LB-U2	Rect	660	300	2.5	-	27.4	4.10	0.28	c	strips	en U	4	0.10	22	560
SB-F1	Rect	155	75	2.5	-	27.4	5.40	0.28	c	strips	W	1	0.10	25	66
MB-F1	Rect	305	150	2.5	-	27.4	4.40	0.28	c	strips	W	2	0.10	87	236
LB-F1	Rect	660	300	2.5	-	27.4	4.10	0.28	C	strips	W	4	0.10	334	872
				-		46	- Bae	[6]	-						-
S-Cont	Rect	305	203	3	-	25.2	0.16	0.00	-	-	-	-	-	-	66
M-Cont	Rect	457	305	3	-	32	0.16	0.00	-	-	-	-	-	-	159
L-Cont	Rect	610	406	3	-	32	0.18	0.00	-	-	-	-	-	-	244
S-Str	Rect	305	203	3	-	25.2	0.16	0.00	С	strips	en U	1	0.05	47	113
M-Str	Rect	457	305	3	-	32	0.16	0.00	С	strips	en U	1	0.05	87	246
L-Str	Rect	610	406	3	-	32	0.18	0.00	С	strips	en U	1	0.05	127	371
					47 - I	Boussell	nam ar	nd Cha	allal [7]						
ED2 S0-0L	Т	175	95	3	14	25	3.61	0.00	-	-	-	-	-	-	36
ED1 S0-0L	Т	350	152	3	14	25	3.76	0.00	-	-	-	-	-	-	81
ED2 S1-0L	Т	175	95	3	14	25	3.61	0.38	-	-	-	-	-	-	93
ED1 S1-OL	T	350	152	3	14	25	3.76	0.38	-	-		-	-	-	263
ED2 S0-1L	-	175	95	3	14	25	3.61	0.00	C	Cont	en U	1	0.14	23	59
ED1 S0-1L	 -	350	152	3	14	25	3.76	0.00	C	Cont	en U	1	0.14	39	120
ED2 S1-1L	1 -	175	95	3	14	25	3.61	0.38	C	Cont	en U	1	0.14	3	96
	1 -	350	152	3	14	25	3.70	0.38	C	Cont	en U	1	0.14	0	255
ED2 30-2L	і т	1/5	95	3	14	25	3.01	0.00	C C	Cont	en U	2	0.28	32	122
ED1 30-2L	T	175	152	2	14	25	2.61	0.00	C C	Cont	on II	2	0.20	40	122
ED2 31-2L ED1 S1-2I	T	350	152	2	14	25	3.01	0.38	c	Cont	en II	2	0.28	12	267
101 51 21		550	152	5	48 - N	LJ Iguven-I	Vinh a	nd Roy	vňák [8]	1	cho	2	0.20		207
G1-RC1	Rect	175	100	1.7	22	25	1.80	0.19		-	-	-	-	-	39
G1-RC2	Rect	350	200	1.7	22	25	1.80	0.19	-	-	-	-	-	-	170
G1-RC3	Rect	525	300	1.7	22	25	1.80	0.19	-	-	-	-	-	-	395
G1-GFRP-1B	Rect	175	100	1.7	22	25	1.80	0.19	G	Cont	en U	1	2.60	18	56
G1-GFRP-2A	Rect	350	200	1.7	22	25	1.80	0.19	G	Cont	en U	2	2.60	55	225
G1-GFRP-3A	Rect	525	300	1.7	22	25	1.80	0.19	G	Cont	en U	3	2.60	64	459
G2-RC1	Rect	196	100	2	22	23.5	2.40	0.16	-	-	-	-	-	-	45
G2-RC2	Rect	442	200	2	22	23.5	2.40	0.16	-	-	-	-	-	-	225
G2-RC3	Rect	682	300	2	22	23.5	2.40	0.16	-	-	-	-	-	-	470
G2-GFRP-1A	Rect	196	100	2	22	23.5	2.40	0.16	G	Cont	en U	1	2.60	18	63
G2-GFRP-2A	Rect	442	200	2	22	23.5	2.40	0.16	G	Cont	en U	2	2.60	80	305
G2-GFRP-3A	Rect	682	300	2	22	23.5	2.40	0.16	G	Cont	en U	3	2.60	180	650
G2-CFRP-1	Rect	196	100	2	22	23.5	2.40	0.16	С	Cont	en U	1	2.00	25	70
G2-CFRP-2	Rect	442	200	2	22	23.5	2.40	0.16	С	Cont	en U	2	2.00	120	345
G2-CFRP-3	Rect	682	300	2	22	23.5	2.40	0.16	С	Cont	en U	3	2.00	260	730

Table A.2 Experimental database on size effect of RC beams shear-strengthened with EB-FRP

Note: G=glass. C=carbon. Cont=continuous. W=wrapped around