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ABSTRACT
I show, in this original research paper, that the famous Riemann Hypothesis is true by proving that its simple
Balazard equivalent form (cited, without proof, in [1] p 16 as the equivalent form 5), which | prove here using
[22] and [30], is true. The proof is essentially based on elementary tools of mathematics; it uses the topological
properties of the functions:
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RESUME
Je montre que la fameuse hypothése de Riemann est vraie en montrant que sa forme équivalente simple de
Balazard (citée, sans preuve, dans [1] p 16, comme la forme équivalente 5) est vraie en utilisant [22] et [30]. La
démonstration est fondée, essentiellement, sur des outils de mathématiques de base en exploitant les propriétés
topologiques des fonctions :
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INTRODUCTION
Definition1: The « Riemann zeta function », is a function ofthe complex variable z = Re(z) + ilm(z) (€ C\{1})

defined as the analytic continuation of the function {(z) = Y&, = —= (converglng for Re(z) > 1)
Remark: Riemann showed [27] that the series { can be contlnued analytically to all complex z# 1, z=1 being a
simple pole such that:lirr11(z - 1){(z) =1.

zZ—>
Definition2 : We call «the Riemann conjecture » or «the Riemann hypothesis » or «the Riemann zeta
hypothesis », the following assertion : « the zeros points z (i. e : the points z € C\{1} such that : {(z) = 0) of the

Riemann zeta function ¢ (see definitionl), which are not the trivial zeros z, = —2k, k € N*, satisfies : Re(z) =
1 n

2
Remark: the confirmation or infirmation of the Riemann hypothesis problem is the 8™ one of the famous 23
Hilbert problems announced in 1900 [20], and the first among the 7 millennium problems” announced by « the
Clay mathematics institute » in 2000[7], and also the first among the 18 Steve Smale problems announced in
1997[32].

Some history: this conjecture was announced by the German mathematician Georg Friedrich Bernard Riemann
(1826-1866) in 1859 1n a memory presented to the Berlin Academy. He has written: “...it is very probable that all

roots [ofé(t) =+ 2 (zt - 5) (fo xz 4e ~*dx){ (it + —) with: ¢ a complex number and i? = —1], are real.

Certainly one would wish for a stricter proof here; i have meanwhile temporarily put aside the research for this
after some fleeting attempts, as it appears unnecessary for the next objective of my investigation.” [23][27].
From this date many mathematicians have devoted a lot of time to prove this conjecture but without success so
far.

On the eighth of August 1900, the German mathematician David Hilbert (1862-1943) said in his lecture, delivered
before the second International congress of mathematicians at Paris, in the 8™ point (about the prime numbers
problems) : « ...of the problems set us by Riemann’s paper: « Ueber die Anzahl der primzahlen unter einer
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gegebenen grosse », it still remains to prove the correctness of an exceedingly important statement of Riemann,
viz., that the zeros points of the function {(s) defined by {(s) =1 + ; + % + % + -, all have real part ; except
the well-known negative integral real zeros... » [20].

One day, D.Hilbert said: « If I had to be awaked after having slept thousand years, my first question would be:
did one show the Riemann hypothesis? »[29].

In 1914, the British mathematician G.H.Hardy (1877-1947) proved that the set E = {z € Csuch that {(z) =
0 and Re(z) = %} is infinite, but could not give a proof of the Riemann hypothesis [19].

In 1927, E. Landau (1877-1938) showed that if Riemann hypothesis is admitted we can deduce a great number of
consequences [24].

In 1940, the French mathematician A. Weil (1906-1998) showed that the Riemann hypothesis is true for the zeta
function associated to fields of algebraic functions (on a finite field of constants), by using geometrical arguments
[36].

However, A. Weil wrote a day: « when | was young | hoped to prove the Riemann hypothesis. When | became a
little old I hoped to can learn and understand a proof of the Riemann hypothesis. Now, | could be satisfied by
knowing that there is a proof » [23].

In 1989, J.B.Conrey showed that more than gof the zeros of the Riemann zeta function have real part equal to %
[10].

In 1996, Alain Connes constructed an operator D on a space of functions of adelic variables (i.e.: laying in the
ring of adels, i.e. the Cartesian product of R and all the p-adic fields for p describing the set of prime numbers),

for which the spectrum is:a(D) = {r e R,L (§+ ir) = 0}, (where i? = —1, and L is a kind of general zeta

function), this permits to deduce the Riemann hypothesis if we can prove that this spectrum contains all the roots
of L[8], [9].

In 2000, the “Clay mathematics institute of Cambridge” considered the Riemann hypothesis among the
« millennium problems » and devoted a million of Dollars for any one giving a response to the Riemann
hypothesis [7].

The Riemann hypothesis was verified, by computer, for higher numerical values.
Indeed in October 2004, X.Gourdon [18] showed that the first 1012 non trivial zeros, of the Riemann zeta function,

have real part equal to % , recording then the higher value reached up to now.. Note that numerical methods of
Riemann hypothesis verification are based essentially on the intermediate values theorem (by showing that the

S oo S_ . .
continuous function:s — n_i(f0+ t2"'e~tdt){(s), (having the same zeros as ¢ in the band 0 < Re(z) < 1 and
being real on the critical line), has at least one zero between two points where it takes opposite signs).

On the first of January 2004, Henri de Berliocchi published at Economica a book entitled « infirmation de
I’hypothése de Riemann ». This is simply impossible because (as it is will be shown in the present work) the
Riemann hypothesis is true [2].

on the fourteenth of June 2004, Louis De Branges De Bourcia announced that he had proved the generalized
Riemann hypothesis, but according to Eric Weisstein: « De Branges has written a number of papers discussing a
potential approach to the generalized Riemann hypothesis... and in fact claiming to prove the generalized
Riemann hypothesis..; but no actual proofs seem to be present in this papers. Furthermore, Conrey and Li prove
a counter example to the De Branges’s approach, which essentially means that the theory developed by De
Branges, is not viable» [11] [37].

Recently On the twenty sixth of July 2015 the French mathematician Cédric Villani, director of the “Institut de
Henri Poincaré” in Paris, declared to the French Journal “Journal de Dimanche” (JDD) [34] that proving the
veracity of the Riemann hypothesis is almost an impossible mission. Our present work shows the contrary.
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Recently also on the twenty seventh of October 2015 the Italian mathematician Agostino Prastaro published in
arxiv [26] a paper entitled “the Riemann hypothesis proved” in which he announce that “the Riemann hypothesis
is proved by quantum-extending the zeta Riemann function to a quantum mapping between quantum 1-spheres
with quantum algebra A = C ...algebraic topologic properties of quantum-complex manifolds and suitable bordism
groups of morphisms in the category...of quantum-complex manifolds are utilized” [26]. In any case his approach
is different of my approach.

For other current and relevant references to the Riemann hypothesis see: H.Berliocchi [3] (2/27/2014), Peter
Borwein [4] (2008), Marcus du Sautoy [12] (8/14/2014), some works of Ivan Fesenko on zeta functions and theta
functions [14] (2008), [15] (2010), [16] (2012) and [17] (2015), Barry Mazur/William Stein [25] (2015),
D.Rockmore [28] (2006), Ronald Van Der Veen /Jan Van De Craats [33] (1/3/2011), Matthew Watkins [35]
(11/17/2015) and its references (Which gives the main papers proving and disproving the Riemann hypothesis,
but it seems that no one is convincing)...

The note: the purpose of this original research paper is to prove that the Riemann hypothesis is true by showing
that its Balazard equivalent form, which | prove here, is true. | will only use elementary tools of mathematics by
exploiting the topological properties of the functions:

fs dt  sln(s)
0 In(t) 81

fs dt Vsin(s)

ands - m(s) — 0 In® pa—

s> n(s) —

The note is organized as follows. The §1 is an introduction containing the necessary definitions and some history.
The 82 contains materials and methods presenting the results needed in the proof of the main theorem and the
methods used. The §3 contains the proof of Riemann hypothesis. In 84 we give the conclusions. Finally we give
references for further reading.

Motivations: At last, I want to say that, in 1990 when I was preparing my first thesis in the ‘“Pierre et Marie
Curie” University in Paris, the lecture of the D. Hilbert’s “mathematical problems” [20] motivated in me the
interest of Riemann hypothesis and the obsession of proving it. So this work is the fruit of 26 years of continuous
reflection.

INGREDIENTS OF THE PROOF

Materials: We will need the following facts and results in the proof of our main result.

*Notation: for a, b € R we denote by [a, b] = {t € Rsuch that: a < t < b}

[a,b[= {t € Rsuchthat:a <t < b}and Ja,b[= {t € Rsuchthat:a <t < b}

* Recall that an integer p is prime if its divisors are only 1 and p.

*Let:P = {p € N, p prime}, so P = {2,3,5,7,11,13,17,19,23,29, ...}

* Euclid (3" century before J.C) [13] has showed that IP is a strictly increasing sequence (p,;)ms1-

*Let forx e R*: P, = {p € P,p < x} and n(x) = card(P,) the number of its elements. One has: P, =
@and w(x) =0 forx € [0,2[.

*If [x] denotes the integer part of the real x (l.e. the single integer m = [x] such that:m < x < m + 1), one has:
P, = P and m(x) = n([x]).

*Progosmonl (see [38]) If we Let: foxlf(tt) =[P E 42 for x> 2, then: [P =lim(f -+

2 In(t) 0 In(t) 0 1In(t) €500 In(t)

2
f1+e ln(t)) is a positive constant such that:

Z dt
f In(0) = 1.0451637801174927848445888891194131365226155781512 ...
_op+1
*Proposition2: (See [31],p 60) we have:Y? _ = % — =Y % s™ for|s| < 1.
*Proposition3: (Term by term mtegratlon see [21] p 148 and p155) Let (f)ns0 @ Sequence of measurable
functions on E < (X, Z, 1) (a measure space) taking their values in C, such that it exists a summable function g

satisfying: Vp € Nvx € E |Zfl 0fn(x)| < g(x),then: f Y [ du(x) = 3% fE frn)du(x)
*Proposition4: (Balazard [1] equivalent form of the Riemann hypothesis inspired from the Koch relation [22] as
sharpened by the Schoenfeld relation [30] ) the two propositions below are equivalents:

1) The Riemann hypothesis
) vx > 2657 |n(x) - ;' d(ft) | < —-VsIn(s)

Where:m(x) is as defined above, m =the perimeter of the circle of diameterl, In(x) is the Napier logarithm and
fxl‘% is as defined in propositionl above.

Proof: (Of proposition4)
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* (1) = (2):
This implication is obtained from the Schoenfeld work [30].
*(2)= (1)
This implication follows from proposition4.1, proposition 4.2, proposition4.3, proposition 4.4, Proposition 4.5,
proposition 4.6 and proposition 4.7below:
+oo mw(u)du

Proposition4.1: We have, for Re(s) > 1: In({(s)) = s [, oD
See: https://fr.wikipedia.org/wiki/Fonction_zeta_de_Riemann [39]
Proposition4.2: We have:

u dt

+oo Jo gy In(t) _ 1y 2 adt +oo In(1-u~5)du
s [, - 1)d —In(1 - D Js G -J, T for Re(s) > 1.
Proof: (Of proposition 4.2)
roo Ioposdu + dt

*| © 70 In(t) — © —(n+1)s 1 (U

By proposition 2, for Re(s) > 1: f T v =yr® fo o
*So, considering the integration by parts:

' -s(n+1)-1 y~SHD
fr@ =u fa) = ="

dt , _ 1
gw) = 0 m g'(w) = (@
y~s(m+1) fu de —s(n+1)
(T y-s+n-1 (¥ at 0 Tn()+ 1 +oou du

We have.f fo In(t) s(n+1) 1% s(n+1) fz In(w)

_s(n+1) fOZl:(tt) 1 f+oou —s(n+1)

s(n+1) s(n+1) 72 In(u)
*Then, by proposition 3, we have:
u dt ooy ~S(n+1)
f+oo fOln(t) _ J«Z dat Z +Z fz Wdu
2 u(us- 1) 0 In(t) &M= 0(n+1)zs(n+1) n+1

__ _ 2 dt +oo In(1-u~5)du
==In(1 )fo In(t) fz In(w)

Progositlon4 3: We have:

+oo N(s)~ 2Re($)(n+1)+1ln(N(S)) (2657)—2Re(s)(n+1)+1]n(2657) _,_Do t—2Re(s)dt
(DX —2Re(s)(n+1)+1 —In(N() Jy N(s) T2Re®1 T
In(2657) f

400 t~2Re(S)gg
2657 t2Re(s)_q
oo (M)TZREEM+1)+1 +oo  In(t)dt +oo t 2R In(t)at
(Z)Zn 1( 2Re(s)(n+1)+1)2 ZRe(S) fM (tZRe(S)_l))Z + 2Re( )f t2Re(s)_1 (1 +

+oo t—2Re(s) gy M—ZRe(s)+11n(M)
ln(M)) f (tzRe(s)_l) M2Re(s)_1
Proof: (Of proposition4.3)
(1)*We have: for M = 2657 or N(s)

M—2Re(s)(n+1)+1 +o0

foo — 0 = —2R + —2nR _ 40 _op 1 _ +oo t—2Re(8) g¢
Yot Re@ iDL — [T RO e r e ¢7AMRE) = — [H m2Re(®) (714_2“(5) - 1) =-]. R
*The result follows.

Remarks :( (i) =————————is equivalent in the neighbourhood of +oo to t ~#R€(s) o the integral converges for
tzRe(s)(tzRe(s)_l)

Re(s) > %

(ii)If we replace s by 1 — s the integral obtained is convergent for: 0 < Re(s) < %

(2) This second assertion is obtained by derivation of the precedent relatively to x = Re(s).

m-2xm+n)+1 ! oo (n+1)M— 2D+ Z+°° (nr1)M—2XMH D+

En2 2x(n+1)+1) = n=1l (_2x(n+1)+1)2 — 2In(M) —2x(n+1)+1
1ot (- 2x(n+1)+1—1)M—2"("+1)+1 1n(M)Z+°O (—2x(n+1)+1-1)M~2X(+D+1
—T 4m=1
(—2x(n+1)+1)2 —2x(n+1)+1
_ letem m—2x(n+D+1 4 +oo0 M—zx(n+1)+1 ln(M) +oo0 M—Zx(n+1)+1 ln(M) +oo0 M—2x(n+1)+1
___2"21 —2x(n+1)+1 +7 ":1(—2x(n+1)+1)2 Xz Znzh —2x(n+1)+1
(1+ln(M)) +oo t_zxdt M—2x(nt1)+1 ]n(M) M—2x+1 +oot zxdt
f t2%_1 Z" 1 (—2x(n+1)+1)2 x (sz—1> _(f £2%— 1
. totT len(t)dt +00 t_len(t)dt
=2 fM (t2x 1)2 Zf t2x 1
Proposition4.4: For Re(s) > 1, we have:
J‘+°° In(uw) du <J‘+°° In(u) du
2657 x/ﬂlus =11 Jaesy \/E(URE(S) -1)
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Proof: (Of proposition4.4)
*We have: [u® — 1| = |[uf| — 1 = uR® — 1 > (2657)R¢®) — 1 > 0 for Re(s) > 1
*The result follows

Proposition4.5: We have: 3a(s) > 0,b(s) > 0, A(s) some constants such that:

N(s) In(wdu __  a(s) b(s) 1
f2657 2RO 1) 2re(s)1 T @Re(s)-1)? + A(s) for1 > Re(s) > 3

Proof: (Of proposition4.5)

*We have:

N(s) In(wWdu __ (N(s) In(w) =yt N(s) u~2Re(s)(n+1
f2657 (u2Re(s) 1) - f2657 uZRe(s)(l_u—zRe(s)) - Z 265e e(s)(n )ln(u) du
*Consider the integration by parts:

’ — 1,—2Re(s)(n+1) :M
ffw)=u f(w) —2Re(s)(n+1)+1

1

g@) =In@w) g'@)=2
*We have:

N(s) ~2Re(s)(n+1) _ RO I NG) 1 (NG _Re(s)(n+1)
f2657 In(w) = [ —2Re(s)(n+1)+1 -2657 —2Re(S)(n+1)+1f2657u du

_N(s)"2Re(®)(n+1)+1 ln(N(S))—ln(2657)(2657)_2Re(5)(n+1)+% _ N(5)TPREOHD+1_(5657)~2Re(s)(n+1)+1

—2Re(s)(n+1)+1 (—2Re(s)(n+1)+1)2
*S0 by proposition4.3:

N(S) In(Wdu iy N(s) 2REOOHD+n(y(5))—2657 2R (+1)+1 +oo N(s)72REMHD+1_5g57-2Re(s)(n+1)+1
f2657 (u2Re(s)—1) — 4n=0 2Re(s)(n+ 1)+1 — 4n+0 (“2Re(s)(n+D+1)2
:ln(N(s))N(s)‘2Re(S)“—1n(2657)(2657)‘R‘3(5)+1 _ N(S)—zRe(s)+1_(2657)—2Re(s)+1 ln(N(s)) f+oo t—2Re(s) g¢

—2Re(s)+1 (—2Re(s)+1)? N(s) ¢2Re(s)—1

+o0 t~2Re(S)g¢ +oo t~2Re) In(t)dt +oo  In(t)dt
In(2657) f2657m (2Re(s) |, N ezRee—; T 2Re(s 5) Ju (t2Re)-1)2 a+

+oo t72Re@gr  N(s)T2REO+In(N (s)) +oo t72REG In(e)de _nnar
ln(N(s))f N(s) 2Re(s)_1 - N(s)ZRe(S)—l )+ ZR( )f657 t2Re(s)_1 + 2R ( )f657 (tZRe(S) 1)2 - (1 +
+oo tT2Re()gr 2657 2Re()+1n(2657)
ln(2657)) f 2657 t2Re(S)_1 26572Re(s) 1
_a(s) b(s)

. 1
et T CZRemi2 + A(s), where A(s) is a constant such that|A(s)|< +co for >< Re(s) <1

Where: a(s) = —(In ((N(s))N (s) 2R+ — In(2657) 26572F¢()+1) > 0
And b(s) = —(N(s)2Re@+1 — 2657-2R(E(+1) > ( because: N(s) > 2657 and Re(s) > 1

Propostion4.6: (1) We have for Re(s) > 1 % j;‘”lL

factors of n (Recall that : A(n) = (=1)2® is called the Liouville number)
Q(n) Q(n)
(3)Z+oo & — (Zsl _ )Z+oo [ G Dl 1) and Z+oo (nl) _ (251_1 -1) 27-".1201%
(2) We have
Q)
For 1> Re(s) >2: In(T}% (nl) ) =In(¢(29)) - In(Ti &) +1n (2% )+ In(z— 1)
Proof: (Of proposition4.6)
(1)See [36]
(2)Because Q(2n) = Q(n) + 1, we have:

with Q(n) the repetitive number of prime

oo (- 1)n( 1)n(n) ( l)n(zn) (- l)n(2n+1)
n=1 ns Zn 1 ns Zn 1 (2n 1)5
o DD acn +oo (= 1) 0 1 g DG
—Z - a2 —sinsi s
_ 1 oo (= 1)"(2") +oo (= 1) am +o (—ne™ 1) am
Tosmi4m=1" 5 An=1T s (25 2 1)2

(3)We have from (1) and (2) for Re(s) > 1:
Qn) —_1\n(—_1\2(Mn)
(=100 Gm-nmaS—  (Ge-1)ey  wmEEU—

25 1 o _
(== 1)2() Gz = 1) 1o CL° Gz = 1)

All the series in the precedent relation being convergent for % < Re(s) < 1, this relation can be extended to this

band. So, by taking the logarithm, we have for:Re(s) €] % 1[:
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n Qn)
In(¢(2s)) = +In (Z &) In (251 ) ln(zs >—1
Proposition4.7: (1) we have f ; rany complex s qt 0and 1:
((1—-3s)=202mn)"% cos( ) I'(s){(s)
Where I'(s) = f0+°° t5~le~tdt is the gamma function (converging for Re(s)>0)
(2)We have For 0 < Re(s) < 1

In(zie S Y = In(gte (nl) S 4 n (2(2n) 2 cos (% )r(s)> +in(5-1)-InG5-1)
Proof: (of proposition 4.7)

(1)See [27] and [39].

(2) The result is deduced from (1) by extension.

Return to the proof of proposition4:

*Suppose: Vu > 2657 |m(u) — [’ l:l(tt)| < ‘/_l“(u)

0 < Re(s) <1 and Z+°° (nl) =0 = Re(s) =
First case: Suppose % <Re(s) <1

+00

and show that:

*For 1 > Re(s) > %, we have: Re(2s) > 1, so by the proposition 4.1... Proposition4.6

1 S & (~1)(~1)w 1 1 o L
——+1Z —12 —1( —1)—1——1—zf o)
2 | n(n:1 s ) | — [In( L o | —In 251 n(zs—z ) —12s W@ -1 |
1 +oo f:l:(tt) +00 féilf(tt) +o0 T(W)~ ft:llf(tz)
< —-+1InC@s)| - |25 [, s Q| < [In(§(25)) — 25 J, sz dul = 12s S, vz dul
2657 T(W)— fo ln(t) +oo (W)~ ff;llrlli(tt) 2657 T(W- fo ln(t) )~ f(;tlrlli(tt)
|2 f u(u2s— 1) du + 2s f2657 u(u2s-1) du f u( 25_1) du| +2s f2657 u(u2s-1) du |

25 f2657 m(u)— fo ln(t) |2$| f+oo x/_ln(u)du <|2s f2657 m(w)- fo ln(t) |25|J- In(u)
u(u2s-1) 2657 [u(u2S—1)| — u(u?s-1) 2657 u(u2Re(s)-1)

*Now, by the absurd argument | deduce that: IN(s) an integer > 2657 such that:

+oo D"
In(X72 ns )|< + 2657 u(u2s-1) u(us-1) ns 25-1

1 2|s| N(s) Vuln(w)du 2|s| N(s) _ In(wdu
1) (25 2 ) f657 u(u2Re(s)— 1)| B(s )+ f567 Vu(u2Re(s) 1)

12s| N(s) In(uw)du
< B(S) + 1657 mareto 5 (Because.ﬁs 1)

b . .
=A(s) + B(s) + Z:(S)_l + (_ZReEZH)Z (By proposition 4.5 with: a(s) > 0, b(s) > 0)

a(s) - 1
(ZRE(S)_1 is >0 because a(s) > 0 and > < Re(s) <1
*So for the first case:

oo (D" _ +oo D™, a(s) b(s)
n=1 s =0= |In(xn2 ns )| =4 = 2Re(s)—1 ' (—2Re(s)+1)?

Second case: Suppose 0< Re(s) < 5
*We have: 2Re(1 —s) > 1
*So0, reasoning as in the first case, it is sufficient to replace, in its last relation:s by 1 — s,
* oo ( 1) _ _ a(1-s) b(1-s)
Then:|In(X13 =) | <A1 —s)+B(1 —s) + R T Caretioe)r1)?
Where: a(1 — s) >0and b(1—5)>0
*Finally by the second assertion of proposition4.7, we have

In(Eie (nl) )< A1 —s) + B(1 —s) + |In(2(2m) % 25— F(s)cos(—s)| +

25—1

Z Sk = 0= Re(s) = 1
ns 2

IS W~ fy" -Hr D™
- fN(s) Oln(t) du | ‘ ﬁemwd |+|ln(zgisl)%)—ln( 1

=+00=>2Re(s)—1:0:aRe(s):$

a(1-s) b(1-s)
2Re(1-s)-1  (2Re(1-s)-12

*So for the second case also:

Conclusion: We have showed that:
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u
) — dt < Vs In(s)
o In(t) 8w
*Proposition5: (The intermediate values theorem) let f:[a,b] > R be a function. If (i)f is continuous
(ii)inf(f(a),f(b)) <c< sup(f(a),f(b)), then: 3d € [a, b] such that :
fld)=c

The form wused in numerical verifications of the Riemann hypothesis is the following: if (i)a <
b (ii)f is continuous (iii) f(a)f (b) < 0, then:Ic €]a, b[ such that:f (¢) = 0.
*Definition/Proposition6: Let (X, T) be a topological space and f: X — R be a function.
(1)We say that f is upper semi-continuous on x € X (usc on x) if:

Ve > 03V a neighbourhood of x Suchthat vy e V. f(y) < f(x) +¢€
(2)We say that f is usc on X if it is usc in any point x € X.
(3)We say that f is lower semi-continuous (Isc) on X if ( - f) is usc on X.
Af LsconX ©VteR F={x€X, f(x)<t}isaclosed subset of X.
(5)f Continuouson X  f is Isc and usc on X.
*Proposition7: (Recollement principle) let (X,T) and(Y,S) be two topological spaces and f:X —»Y be a
function. Let (4;);¢; be a family of open subsets of X such that:vi € I f: A; = Y is continuous. Then the function
f:U;e A; = Y is also continuous.
*Proposition8: the function f:[2, +oo[— N defined by f(x) = m(x) is usc on [2, +oo], it is right continuous in
pr Vk = 1 and left discontinuous in p, Vk > 2.
Proof :( Of proposition8)
*Using proposition4, we can see that f is continuous on U}, 1ok, br+1[ because: Vk = 1 Vx €]py, Dt f(x) =
m(p,) = k is constant so continuous.
* f is right continuous in p, Vk > 1
(Because : lim, 7z(py + h) = lim w([p, + h]) = lim n(p, + [h]) = 7(py))
*f is left discontinuous in p, Vk = 2
(Because : lim, m(p; —h) = lim, n([px — hD) = im, 7(py + [-h]) =n(pr — 1D
=n(pr-1) =k — 1 # k =n(py))
*Show that: f isuscin p, Vk = 2. Lete >0
**if € €]0,1]13V =]px — €, px + €[ a neighborhood of p, such that:vx € V
***if x €]pr — €, x|
0<es<l=>pr—€e2p,—12p1Vk22 =
m(x) =m(pr-1) =k -1 <m(pe) =k <m(py) +e€
***if x € [pr, P + €[
O0<e<s<l=ap,+te<p,+1<pVk=22=>nkx)=nlp) <m(p) +e€
**likely if € €]1, +00[AV =]p,, — é,pk + é [ a neighbourhood of p, such that

VxeV m(x) <m(p) +e

(Note that because:0 < é < 1, the precedent reasoning is also valid)

*Proposition9: Let (X, T) be atopological space. Apart F c X isclosed if: 0 = X\F € T.LetY c X, we define
atopology Ty on Y (inducted by the topology T), defined by:

UETy &30 €TsuchthatU=YNO
Let Z c Y. We call adherence of Z relatively to Ty, denoted adh,(Z), the intersection of all closed subsets of
Y (for Ty) containing Z. One has the following elementary result : if X is metrical space, thenfor ZcY c
X,x €Y, one has an equivalence between the two assertions :
(Nx € adhy(2)
(i3 (Xm)ms1 © Z suchthat x = lim x,,

m-+oo

*Proposition10: Any non empty above bounded part A of R, has sup(A4), which is by definition, the smallest
above bound.
We have: sup(4) € adhr(A)

Methods: The paper is founded essentially on proposition4 and the topological properties of the functions:s —

_ s at _\/Eln(s) _ s at Vs In(s)
m(s) fo In(t) 8 and s - m(s) fo In(t) 8w

Yu = 2657

= the Riemann hypothesis is true

RESULTS AND DISCUSSION
Theorem: We have:

< Valn(x)

Vx = 2657 <
8r

*odt
n(x)—fo m
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Proof: (Of the theorem)
The proof will be deed in two steps.

In the first step: | will show that Vs > 2657 n(s) < fosi Vsin(s)
ll’l(t) 81
In the second step: | will show that Vs > 2657 m(s) = fos 1:(’-;) _ \/E;r;(s)
I-First step:
Lemmal: Vs > 2657 we have n(s) < Osi 4 YsinGs)
ll’l(t) 81
Proof: (of lemmal)
Let:
v p(s) = [FAL 4 B

0 In(t) 8T
*0(s) =1(s) — ¢(s)
* A = {s € [2657,+o[ such that : 8(s) < 0}
Let for n > 384:4, = {s € [2657,p,,] suchthat[2657,s] € A}, ((pn)n=1 being the strictly increasing
sequence of positive prime integers)
Remark: | will deduce lemmal from seven claims.
1-In claiml: I will show that £(2657) < ¢(2657)
2-1n claim2: | will show that adhzes7,+e0[(A) € A U (Ui Z3g4{Pi})
Claim2 will be deduced from two under claims
2-1-1n under claiml: | will show that ¢: [2, +oo[— [¢(2), +oo[ is a strictly increasing continuous and derivable
function.
2-2-1n under claim2: | will show that the function 8 =  — ¢ is continuous on the intervals [py, pr+1[ Yk = 1.
3-in claim3: I will show that a,, = sup(4,,) exists in adhzes57,4+0[(An)
4-1n claim4: | will show that [2657, +oo[c 4, Cc A
5-In claim5: | will show that Vn > 384 a,, < a4,
6-In claimé6: | will show that a,, € A,, or a,, = p,
Claim 6 will be deduced from two under claims
6-1In under claim3: | will show A,, = A, if k = 384 is such that a,, = p;,
6-21n under claim4: | will show a,, = p; = p,
7-In claim?: 1 will show (2657, +oo[= A
Claim7 will be deduced from two claims:
7-1 In under claim5: | will show vn > 385 p,,_; < a,
7-2 In under claim6: | will show vn > 386 [p,_,, pn_1] € A
Give now the proofs.
Claiml: One has: m(2657) = 384 < ¢(2657) = 415,7684926 ...
Proof: (Of claiml)
(1)By the list of prime numbers [6], 2657 is the 384" prime number, so:

m(2657) = 384

(2)*According to [5], we have: f22657h:% = 398.5516531 ...
*S0, using propositionl of Preliminaries, we have:
2657 dt 2657 dt 2 dt ~
Jy oh J; e 1o g = 398.5516531 ... + 1.0451637 ... = 399.5968169
*The result follows, because: —2657?(2657) = 16.1716757 (according to [5])

A
Claim2: We have: adh;¢s7 +00[(A) © AU (Ui Sga{pi}) -
Under claimi:
@:[2,4+0o[— [@(2), +oo] is a strictly increasing continuous and derivable function.
Proof: (Of the under claiml)

*Using propositionl, the function: [*-2 = [*¥ £ 4 (2.4t _ ¥ dt

oo 2 mo T hing = no + 1.045 ... is evidently continuous and

derivable for x > 2.

. 1 1 /1  Ink)
*We have: ¢'(x) =m+a(ﬁ+ e
*So, the result follows.
Under claim2: 6 = m — ¢ is continuous on [py, Pr+1[ Yk = 1
Proof: (Of the under claim2)
*X € [P, Prs1[= m(x) = w(py) = k is continuous in x because it is constant.
*Using the under claiml, the under claim2 is, then, proved.
Proof: (Of claim?2)

)>0f0ranyx22.

http: // www.gjaets.com/ © Global Journal of Advance Engineering Technology and Sciences
8]


http://www.gjaets.com/

[Ghanim* et al., 4(4): April, 2017] ISSN 2349-0292
Impact Factor 2.675

*Let: x € adhyzes7,400[(A) © [2657, +00[= Ui Zs54[Dr Prcs1l
* According to proposition9 (of preliminaries), we have x = lim x,, with: x,,, € AVm > 1 and x € [py, Pr+1l

m-+oo
for a certain integer k > 384.
So, we have two cases:
First case: x = p,
Second case: x €]|py, Pr+1l
*1pw, P+ [ beINg @ neighbourhood of x, one has, by definition of x = ‘m,liToo X'

AN € N*suchthat vm > N x,, €]pk, Pre+1l
*@ being continuous on [py, Pr+1[ (by the under claiml), one has:
X, Xm € [Pro Prsr[ Ym = 1land x = lim x,, = lim 6(x,) = 6(x)
m-—+oo m-+co
*So :
vm=N x,€A=>vVm=1 Q(xm)SOzml_i)rJrrlooO(xm)zé’(x)SO::»xeA

*Finally, by combining the two cases, one has: x € A U (UfZs4{Pk})
*The result follows.
Claim3: a, = supA,, exists in adh;457 1o00[(An)-
Proof: (Of claim3)
A, is anon empty part (According to claiml, because:[2657, psg,] = {2657} € A = 2657 € A,,), and bounded
above by p,,, s0 a, = sup(4,) exists in adh6s57,+[(4n) (According to proposition10).
Claim4: We have: [2657,a,[c A, c A.
Proof: (Of claim4)
*We have: A,, c A, by construction of A, (because :s € 4,, = [2657,s] CcA=>5s € A)
*Let: s € [2657, a,,[. By definition of sup(4,,), we have

s < a, =sup(4,) =3It € A,suchthat: s <t
*Then: [2657,s] c [2657,t] € A (because t € A,) = s € A,,.
* The result follows.
Claim5: We have: vn > 384 a, < a4
Proof: (Of claimb)
*Suppose that: 3n > 384 such that: a,,,, < a,. In particular: a,,,; € 4,,(According to claim4)

*3Im = 1 such that: % <y — Qg © Apypq < Ay — % < ap P < Pn+1
*So, by definition of a,., and a,, : [2657,a, ——] c Aand [2657,a, ——] ¢ A

*l.e.: [2657,a, — =] 1 [2657, +00[\A # © © AN [2657, +o0[\A = @
*This being contradictory, the result is now proved.
Claim6: We have: a,, € 4,, or a, = p,
Proof: (Of claim6)
*We have, using claim2 and claim4:
[2657,a,[c A =
adhiz657,+0[([2657, ay[) = [2657,ay,] € adhiz657,+0((A) € AU (UkZsg4lpic)
*S0: a, € AU (UiZeu{vi)) = a, € A or 3k = 384 such that: a, = py
*Suppose that we are in the second case:” 3k > 384 such that:a,, = p;, < p,,", we have:
Under claim3: We have:A, = 4,
Proof: (Of under claim3)
*We have: a, = py = a, = pr = ai
*S0: [2657,a,]\[2657,px] = @ > [2657, a,]\[2657, pi]
= [2657,a,]\[2657,p,] = @ = [2657,a,] = [2657,p,] = a, = px = a,
= A, =4,
Under claim4: a,, = py = pn
Proof: (Of under claim4)
*By the precedent under claim3, we have:
an = pr = Ap = A = adhzes7,100[(Ar) = adhiz657,100((An)
*So: An c adh[2657,+oo[(An) c [2657, pn]
*Then: adhz457,+00[(Ak)\adR[2657,+00[(An) = @ D adRz657,100[(Ax)\[2657, ]
= adhiz657,+00[(AK)\[2657,p,] = @
= adhiz657,+00[(Ar) = [2657,p] = [2657,pp] = Pk = Py
Conclusion: The claim 6 is now proved.
Claim7: We have: [2657,+00[= A4
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Proof: (Of claim?7)

The proof of claim 7 will follow the under claim below.

Under claim5: vn =385 p,.; <a,

Proof: (Of under claimb)

*Do a recurrence on n = 385.

*The property is true for n = 385, because: ps3gs_1 = P3gs = 2657 < asgs
*Suppose: p,—, < a,_, and show that: p,,_; < a,

*If not, we have: p,_, < a,_1 < a, < Pp_q

*Using claim6, we have two cases: a,, = p,, oOr a, € A

First case: The case: a,, = p,, cannot occur because:a,, = p, < pn_1 < b IS impossible.
Second case: We are, so, in the case a,, € 4

First Under case: if a,, = a,_4

*We have:

an = Aap—q = An = An—l = An\An—l = @ 2 [26571 an]\[2657: pn—l[z [an: pn—l]
*[an, pn_1] = @ being impossible (Because a,, < p,_1), this first under case cannot occur.
Second under case: if p,_, < a,_1 < a, < Pr_q
*We have: a,,_; < a, < p,—; = Im = 1 suchthata,_; <a, — % <a, <pp1
*So, by definition of a,, and a,,_:
[2657,a, ——] N [2675,+00[\A # @ C A N [2657, +o[\A = 0
*This being contradictory, the second under case cannot also occur and the under claim5 is now proved.
Under claim6 We have: Yn > 386 [p,_2,Pn_1] € 4
Proof: (Of under claim6)
*Using claim 6, we have:vn > 384 [2657,a,] < A or [2657,p,[c A
*S0, by the under claim 5, we have in any case: vn > 385 [2657,p,_1] € A
*In particular: Vn > 386 [pn_2,Pn_1] € A
Conclusion: Using the under claim6, we have:
Vn > 386 [Pp-z Pn-1] € A = UjZsg6[Pn—2, Pn-1] = [2657, +0[c A < [2657, +0o[
Then the claim7, and so lemmal, are proved.
The proof of the first step is, then, finished.
11-Second step :

Lemma2: Vs > 2657 we have: m(s) > fosl;% - ‘E:T‘T(S)

Proof: (Of lemma2)
Let:y(s) = foslr:%— %, w=y—m and B ={s € [2657,+[, w(s) <0}
Remark: | will deduce lemma2 from eight claims.
1-1n claim8: I will show ¥(2657) < m(2657)
2-In claim9: | will show that ¥: [2, +oo[— [Y(2), +oo[ is a strictly increasing continuous and derivable function.
3-In claim10: | will show that the function w = 1 — m is lower semi continuous on [2, +oo[
4-In claimi1: | will show that the function w is continuous on [py, pr+1[ Yk = 384
5-1n claim12: | will show that B is a closed subset of [2657, +oo.
6-In claim13: | will show that vn > 384 p,, € B
Claim13 will be deduced from two under claims.
6-1-1n under claim7: | show that the function w = ¢ — m is strictly increasing on [p,, Pn+1|
6-2-In _under claim8: if n(n),n(n+ 1) € [p,, pas1[ are such that w(p,) =yYHn)) and n(p,4q) =
Y(n(n + 1)) then n(n) < n(n + 1) is impossible.
7-In claim14: | will show vn > 384 [2657,p,] € B
Claim14 will be deduced from five under claims
7-1-1n under claim9: | will show that:
b,, = supB, = sup{s € [2657, p, ]such that[2657,s] c B} exists in B,,
7-2-1n under claim10: | will show [2657, b,[c B, € B
7-3-In under claiml1: | will show B,, = [2657, b,](< B)
7-4-1n under claim12: | will show vn > 385 b,,_; < b,
7-5-1n under claim13: | will show vn > 385 [2657,p,_,] € [2657, b,]
8-In claim15: | will show that B = [2657, 4o
Give vow the proofs.
Claim8: We have: 1(2657) = 383.4252 ... < m(2657) = 384
Proof :( Of claim8)
See the proof of claim1l.
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Claim9: One has: ¥: [2, +oo[— [(2), +oo[ is a strictly increasing continuous derivable function.
Proof: (Of claim9)

* N _ 1 1/1 In(s)
We have: ¢’ (s) = e o (\/§+ 2\/5)'

*Let: g(s) =1+ 16my/s —In(s) — 1.

* . _ 16m2s—16my/s—1
We have: g'(s) = s Vi Vi
> 0 for s > 0.34)

*So0 g is strictly increasing for s > 2.
*Then: g(s) = g(2) =6.79...> 0 fors = 2

* . ’ _ ; _ i i In(s) . . . . .
Because:g(s) > 0 @ Y’'(s) = oo (\/E + zJE) > 0, Y is effectively strictly increasing for s > 2.

Claim10: The function w(s) = Y(s) — m(s) is lower semi continuous on [2, +oo].

Proof: (Of claim10)

The result is obtained by combination of the assertion (3) of the Definition/Proposition6 and proposition8. (y is
continuous and —m sci)

Claim11: The function w is continuous on [py, pr+1[ Vk = 384

Proof: (Of claim11)

*We have: s € [py, Prs1[= () = t(pr) = k = w(s) = P(s) — n(s) = P(s) — k is continuous on [py, Pi+1[
(Because according to claim8, i is continuous).

*So the result follows.

Claim12: One has: B is a closed subset of [2657, +oo].

Proof: (Of claim12)

The result is obtained by application of the assertion (4) of the Definition/proposition6 and claim10. Indeed: wsci
= B = {s € [2657,+o[, w(s) < 0} is a closed subset of [2657, +o[.

Claimi3: vn >384 Y(p,) <n(p,) i.e.vn >384 p, €B

Proof: (Of claim13)

*Do a recurrence on n > 384.

*Using claim8, the property is true for n = 384, suppose, so, that it is true for n and show that it is true for n + 1.

*If not, we have:y(p,) < (py) < T(Pp+1) < P@Pn+1)-
*Since P is continuous, the intermediate values theorem= 3In(n),n(n + 1) € [p,, Prs1[ Such that: m(p,) =

Y(M(n) < T(Pny1) =P+ 1))

(so we have:p,, < n(n) <n(n+1) < p,,+1, because Y is strictly increasing, according to claim9 ).

Under claim7: w = — m is strictly increasing on [p,, Prn1l-

Proof: (Of under claim7)

As ) is strictly increasing, according to claim 9, then:

Vt € [Pp Pnsa| @) =) —n(t) = P(t) —n(p,) = wis a continuous (and strictly increasing) function
On[pn' pn+1[-

Under claim8: n(n) < n(n + 1) is impossible.

Proof: (Of under claim8)

*We have: 3N > 1 such that:vm > N % <nn+1) —nn).
*So0, using the under claim?7, we have:

wnm) =0 < w(nm +=) < 0@+ +1) - ) = w@@® + 1) =0

*This is contradictory, hence the under claim8 is proved.

Conclusion: The claim13 is now proved.

Claiml14: We have: vn > 384 [2657,p,] € B

Proof: (Of claim14)

Forn > 384, let:B, = {s € [2657, p,,] such that [2657,s] c B}

Under claim9: b,, = sup(B,,) exists in B,,.

Proof: (Of under claim9)

B, is a non empty part of [2657,p,,] (According to claim8), bounded above (by p,,). So, using proposition10, we
have: b, = sup(B,) € adhz6s57,+w[(By) €Xists.

Under claim10: We have: [2657, b,[c B, € B

Proof: (Of under claim10)

*We have:B,, c B, by construction of B,,.

*Let: s € [2657, b,,[. By definition of b,, = supB,: 3x € B, such that: s < x (because: Vx € B, s=x =s=>
b, = supB,)

*S0: [2657,s] c [2657,x] c B (by definition of x) © s € B,,.

*The result follows.

is >0 for s> 2 (because the trinomial 16mw?s%? — 16ms — 1 is
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Under claiml1: We have: B,, = [2657,b,] € B
Proof: (Of under claim11)
*We have: B, c [2657, b,,] by definition of b,,.
*B being a closed subset of [2657,+o0[(According to claim12), we have, using the under claim10:
[2657, by[C B = adhz657,+00[([2657, by [) = [2657, b,] € adhz657,+00(B) = B
*So0:
b, € B, = [2657,b,] = [2657, b,[U {b,} € B, UB, = B, C [2657,b,]
Under claim12: We have: vn = 385 b,_; < b,
Proof: (Of under claim12)
*If not:
dn = 385 suchthatb, < b, <pp_1 <pn = b,_1 €B,
= [2657,p,] 2 [2675,p,_1] 2 [2675,b,_1] ¢ B
*This is contradictory with the under claim11. So, the under claim12 is proved.
Under claim13: We have: vn > 385 [2657,p,,_1] € [2657, b, ]
Proof: (Of under claim13)
*Do a recurrence onn > 385.
*The property is true for n = 385, because:[2657, psgs_1] = {2657} € [2657, bgs]
*Suppose that: [2657,p,,_,] © [2657, b,,_,] and show that: [2657, p,_1] < [2657, b,]
*If not, we have: p,_, < b, 1 < b, <Pp_1
*S0, we can distinguish two cases:
First case: b,_; = b,
*We have:b,,_; = b, = B,_, = B,
*So:
Bn—l c [2657' pn—l[:) Bn\Bn—l = Q) - Bn\[2657:pn—1[
= B, = [2657,b,] = [2657,pn_1[ = [2657, p,_1[\[2657, b,] =]bp, Pr_1[= @
*This is contradictory (Because our hypothesis is :b,, < p,_). So, this case cannot occur.
Second case: b,y < b, < Pp_1 -
*We have: b, < p,_, and [2657,b,] € B = b, € B,,_,
*But, then: b,,_; = supB,,_; < b, € B,,_; is impossible (by definition of the sup)
*So, this case also cannot occur.
Conclusion: our hypothesis « p,,_, < b,_; < b, < p,_4 » IS not true, and then, we have:
Pn—2 < bn—l < Pn-1 < bn
Finally: vn = 385 [2657,p,,_1] € [2657,b,] c B, and the claim14 is now proved.
Claim15: We have: B = [2657, +oo][
Proof: (Of claim15)
*Using under claim11 and under claim 13, we have:
vn = 386 [pn_2, Pn_1[C [2657,p,_1] € [2657,b,] € B
*80: U3 Z386[Pn—2 Pp—1[= [2657, +o0[c B < [2657, +o[
Conclusion: The lemmaz2 is now proved. This finishes the proof of the 2¢¢ step and the proof of our main theorem.

CONCLUSIONS
I have proved the Riemann hypothesis via elementary tools of mathematics, because the Riemann hypothesis is
equivalent to our main theorem (See the poof of proposition 4 in §2, and the references [22] and [30]).
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