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ABSTRACT
In this paper the concept of intuitionistic fuzzy topological d- algebras is studied, and some related properties are
discussed.
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INTRODUCTION

The idea of intuitionistic fuzzy set was first published by K. T. Atanassov , as a generalization of the notion of
fuzzy sets. In this paper, using the Atanassov’s idea, we establish the notion of intuitionistic fuzzy d-algebras,
equivalence relations on the family of all intuitionistic fuzzy d-algebras, and intuitionistic fuzzy topological d-
algebras which are a generalization of the notion of fuzzy topological d-algebras, initiated by Jun and Kim . We
investigate several properties, and show that the d-homomorphic image and preimage of an intuitionistic fuzzy
topological d-algebra is an intuitionistic fuzzy topological d-algebra.

PRELIMINARIES
Definition 2.1 A d-algebra is a non-empty set X with a constant 0 and a binary operation “#’ satisfying the
following axioms:

0] X *#X=0,
) 0#x=0,

x*y=0andy *x =0 imply
(rn X =y

forall x,y,zinX.
A non-empty subset N of a d-algebra X is called a d-subalgebra of X if x »y €N forany x, y €N . A mapping « :
X — Y of d-algebras is called a d-homomorphism if a(x *y) = a(x) *a(y) forall x,y €X .
Definition 2.2 An intuitionistic fuzzy set (IFS) D in X is an object having the form

D={xuo ()70 (x) [x€X}
where the functions pp : X — [0, 1] and yp : X — [0, 1] denote the degree of membership (namely pp (x)) and the
degree of nonmembership (namely yp (X)) of each element x € X to the set D, respectively, and 0 < pup (x) + yp (X)

<1foreachx €X.

For the sake of simplicity, we shall use the notation D = (X, U, yp )instead of D = { X, kb (X), yo (X) | x €X }. Let
f be a mapping fromaset XtoasetY . If

B={y,ue(¥).76(y) [|y€eY}
isan IFS in Y, then the preimage of B under f, denoted by f “3(B), is the IFS in X defined by
F2B) ={x f *(ue )(x), f (8 )(x) | x €X},

and if D={x, o (X), yo (X) | x €X }isan IFS in X, then the image of D under f, denoted by f (D), is the IFS in
Y defined by

F(D) = {Y, fsup(o )(Y), fint (70 )(Y) lyevh
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where
sup Wb (x), if FHy)=4
fsup(Ho )(y) = X -10)
0, otherwise,
and
inf y ), iffiy)=
x fXy) D g
fint (y0 )(Y) = €1, otherwise,

foreachy €Y

INTUITIONISTIC FUZZY D-ALGEBRAS
Definition 3.1. Let X be a d-algebra. An IFS, D = (X, Up, yo) in X is called an intuitionistic fuzzy d-algebra if it
satisfies:

Ho (x *y) =min{o (x), Mo (¥)} and yo (x *y) <max{yo (x), yo (¥)}
forallx,y €X.
Proposition 3.2. If an IFS, D = (X, kb, yo ) in X is an intuitionistic fuzzy d-algebra of X , then pp (0) > uo (x) and
yp (0) <yp (x) for all x €X..

Proof. Let x €X . Then pp (0) = ko (X #*X) > min{up (X), ko (X)} = Ko (X) and yp (0) = yp (X *X) <max{yo (X), 7o
()} =7p (X).

Theorem 3.3. If {Di | i € A} is an arbitrary family of intuitionistic fuzzy d-algebras of X , then ND; is an
intuitionistic fuzzy d-algebra of X,

where ND; = { X, Aloi (X), Vi (X) | X €X }.
Proof. Letx,y €X . Then

AMpi (X *Y) = A(min{poi (X), Koi (Y)}) = min{ poi (X), AHoi (Y)}

and

Vooi (X *Y) < Umax{yoi (X), yoi (¥)}) = max{ yoi (X), Vyoi (¥)}. Hence NDi = X, Ay ,
Vpi IS an intuitionistic fuzzy d-algebra of X .

Theorem 3.4. If an IFS D =(x, P, yp ) in X is an intuitionistic fuzzy d-algebra of X , then so is D, where D = {
X, Ho (x), 1 —up (X) [ X €X}.

Proof. It is sufficient to show that o satisfies the second condition in Definition 3.1.
Letx,y €X. Then

H o (X *y)=1 = pp (x *y) <1 — minfuo (x), po ()}
max{1 — o (), 1 — po (¥)}

max{H o (X), M o ()}

Hence D is an intuitionistic fuzzy d-algebra of X . O

Theorem 3.5. If an IFS D = (X, Hp, yo ) in X is an intuitionistic fuzzy d-algebra of X , then the sets
Xy ={X €X| o (X) =po (0)}and X, :={x €X| yp (X) = yo (0)} are d-subalgebras of X .

Proof. Let X, y € Xy. Then pp (x) = po (0) = po (y), and so

Mo (x *y) =min{up (X), ko (¥)} = Ko (0)

By using Proposition 3.2, we know that pp (X *y) = 1o (0) or equivalently
x *y € Xy Now let x, y €X,. Then
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7o (X *y) <max{yo (X), yo ()} = yo (0)

and by applying Proposition 3.2 we conclude that
yp (X *y) = yp (0) and hence x »y €X, . O

Definition 3.6. Let D = (X, Yo, ypo ) bean IFSin X and lett £[0, 1]. Then the set

U(p,t)={xeX| o (X) >z (resp. L(yp, t) :={X €X | yp (X) <¢}) is called a p-level t-cut
(resp. y-level t-cut) of D.

Theorem 3.7. If an IFS D =( X, Up, yo ) in X is an intuitionistic fuzzy d-algebra of X , then the p-level t-cut and
y-level t-cut of D are d-subalgebras of X for every t €[0, 1] such thatt € Im(ppo ) N Im(yp ), which are called a p-
level d-subalgebra and a y-level d-subalgebra respectively.

Proof. Letx,y €U (4o, t). Then up (x) >t and o (y) >t. It follows that pp (X *y) > min{upo (X), Ko ()} >t so
that x *y €U (Uo , t). Hence U (b , t) is a d-subalgebra of X . Now let X, y €L(yo , t). Then ypo (X *Y) <max{yp
xX), o (W} <tand so x =y € L(yp , t). Therefore L(yp , t) is a d-subalgebra of X

Theorem 3.8 Let D = (X, Up, yo ) be an IFS in X such that the sets U (Up , t) and L(yp , t) are d-subalgebras of X
. Then D =(x, ko, yo ) is an intuitionistic fuzzy d-algebra of X .

Proof. Assume that there exist Xo, Yo € X such that pp (X0 #y0) < min{up (Xo), Uo (Yo)}.
Let

TA0 := 2 uD (x0 *y0) + min{uD (x0), uD (y0)} .

Then Hp (Xo * Yo) < to < min{pp (Xo), Ko (Yo)} and so Xo * yo & U (Up , to), but xo, yo €U (Up , to). This is a
contradiction, and therefore

Mo (X *y) = min{up (X), uo (y)} for all x,y € X .
Now suppose that

b (Xo *Yo) > max{yp (Xo), yp (Yo)} for some Xo, yo € X
. Taking

V's0:=2 3D (x0 *y0) + max{yD (x0), yD (yO)} ,

then max{yp (Xo), yo (Yo)} < So < yp (Xo #Yo). It follows that xo, Yo €L(yp, So) and Xo *Yyo & L(yo, So), a contradiction.
Hence

yo (X *y) <max{yo (X), yo (¥)}
for all x, y € X . This completes the proof. O

Theorem 3.9. Any d-subalgebra of X can be realized as both a p-level d-subalgebra and a y-level d-subalgebra
of some intuitionistic fuzzy d-algebra of X.

Proof. Let S be a d-subalgebra of X and let pp and yp be fuzzy sets in X defined by

HUb (X) = t, if x €S,
0, otherwise,
and
o (X) = s, if x €S,
1, otherwise,

for all x € X where t and s are fixed numbersin (0, 1) suchthatt +s< 1. Letx,y €X.Ifx,y €S, then x xy €S.
Hence pp (X *y) = min{up (X), uo ()} and yo (X *y) = max{yo (X), yo (y)}. If at least one of x and y does not
belong to S, then at least one of
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Mo (X) and pp (y) is equal to 0, and at least one of yp (x) and yo (y) is equal to 1. It follows that
Mo (x *y) =0 =min{uo (x), Uo(y)},

yo (X *y) <1 =max{yo (X), yo(y)}-
Hence D = (X, Wb, yp ) is an intuitionistic fuzzy d-algebra of X . Obviously, U (up,t) =S =L(yo, S). This completes
the proof. I

Theorem 3.10. Let o be a d-homomorphism of a d-algebra X into a d-algebra Y and B an intuitionistic fuzzy d-
algebra of Y . Then a%(B) is an intuitionistic fuzzy d-algebra of X .

Proof. For any x, y € X, we have

Ha=l@)(X *Y) = Hs (a(x *Y)) = Hs (a(X) * a(y)) = min{us (a(X)), Hs
(a(y)}

1) min{l—1@)(X), K1 @ (y)}

and
v~ lex *y) = ys(alx *y)) =8 (alX) *aly))
- max{ys (a(X)), y8 (aly))}
1. max{y.—1le(X) 7—1 @)}
Hence o *(B) is an intuitionistic fuzzy d-algebra in X . U

Theorem 3.11. Let o be a d-homomorphism of a d-algebra X onto a d-algebra Y . If D = (X, Upo , ypy IS an
intuitionistic fuzzy d-algebra of X , then a(D) = y, asup(Mp ), aint (yo ) is an intuitionistic fuzzy d-algebra of Y .

Proof. Let D = (X, Up, yp ) be an intuitionistic fuzzy topological d-algebra in X and let y1, y2 €Y . Noticing that
{x1 #x2 | x1 Ea”Y(y1) and x2 Ea "} (y2)} €{x €X|x Ea}y1 *y2)},

we have
asup(Mo )(Y1 *Y2)
1. sup{up () [ X EaH(y1 *y2)}
> sup{up (X1 #X2) | X1 € X(y1) and X2 €a (y2)}
> sup min{up (X1), Uo (x2)} | X2 Ea Y(y2) and x2 € a (y2)
= min sup{uo (X1) | X1 €a 1(y1)}, sup{up (X2) | X2 € a"1(y2)}
= minfasup(Mo )(Y1), asup(Mo )(y2)}
and
ainf (yo )(y1 *Y2)
= inffyp (X) | X € (y1 *Y2)}
< inffyp (X1 #x2) | X1 Ea(y1) and x2 € a L(y2)}
< inf max{yp (x1), yo (X2)} | X1 Ea(y1) and x2 € a 1(y2)}

max inffyp (x1) | X1 €a " (yn)}, inffyp (x2) | X2 €a(y2)}

max{aint (yo )(Y1), aint (yo )(Y2)}-

Hence a(D) =y, asup(Mp ), aint (yp ) IS an intuitionistic fuzzy d-algebrainyY .
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INTUITIONISTIC FUZZY TOPOLOGICAL D-ALGEBRAS
Coker[3] generalized the concept of fuzzy topological space, first initiated by Chang [2]to the case of intuitionistic
fuzzy sets as follows.

Definition 4.1 An intuitionistic fuzzy topology (IFT for short) on a nonempty set X is a family ® of IFSs in X
satisfying the following axioms:

(T1) 0-,1-€9,
(T2) G1N G2 €O for any G1, G2 €D,
(T3) Gi € forany family {G; :i €J} £ ®. i&

In this case the pair (X, @) is called an intuitionistic fuzzy topological space (IFTS for short) and any IFS in ® is
called an intuitionistic fuzzy open set (IFOS for short) in X .

Definition 4.2 Let (X, ®) and (Y, ¥) be two IFTSs. A mapping f: X — Y is said to be intuitionistic fuzzy coninuous
if the preimage of each IFS in ¥ is an IFS in ®; and f is said to be intuitionistic fuzzy open if the image of each
IFS in @ is an IFS in V.

Definition 4.3. Let D be an IFS in an IFTS (X, ®). Then the induced intuitionistic fuzzy topology (IIFT for short)
on D is the family of IFSs in D which are the intersection with D of IFOSs in X . The IIFT is denoted by ®p , and
the pair (D, ®p ) is called an intuitionistic fuzzy subspace of (X, @).

Definition 4.4. Let (D, ®p ) and (B, Wg ) be intuitionistic fuzzy subspaces of IFTSs (X, ®) and (Y, ¥), respectively,
and letf : X — Y be a mapping. Then f is a mapping ofD into B if f (D) < B. Furthermore, f is said to be relatively
intuitionistic fuzzy continuous if for each IFS Vg in Wg , the intersection f (Vg ) N D is an IFS in ®p ; and f is
said to be relatively intuitionistic fuzzy open if for each IFS Up in ®@p , the image f (Up ) is an IFS in Vg .

Proposition 4.5. Let (D, ®p ) and (B, Ws ) be intuitionistic fuzzy subspaces of IFTSs (X, ®) and (Y, ¥) respectively,
and let f be an intuitionistic fuzzy continuous mapping of X into Y such that f (D) < B. Then f is relatively
intuitionistic fuzzy continuous mapping of D into B.

Proof. Let Vg be an IFS in Wg . Then there exists V € ¥ such that Vg = V N B. Since f is intuitionistic fuzzy
continuous, it follows that f “1(V ) is an IFS in ®. Hence

fiVe)ND=fYrNBND=fNV)NfB)ND=fYV)ND
is an IFS in ®p . This completes the proof. O

For any d-algebra X and any element a € X we use ar to denote the self map of X defined by ar (x) = x = a for all
X EX.

Definition 4.6. Let X be a d-algebra, ® an IFT on X and D an intuitionistic fuzzy d-algebra with IIFT ®p . Then
D is called an intuitionistic fuzzy topological d-algebra if for each a € X the mapping ar : (D, ®p ) — (D, ®p ), X
— X #4, is relatively intuitionistic fuzzy continuous.

Theorem 4.7. Given d-algebras X and Y, and a d-homomorphism a : X — Y, let ® and ¥ be the IFTs on X and
Y respectively such that ® = « 1('P). If B is an intuitionistic fuzzy topological d-algebra in Y , then a%(B) is an
intuitionistic fuzzy topological d-algebra in X .

Proof. Let a € X and let U be an IFS in ®,—1). Since « is an intuitionistic fuzzy con-tinuous mapping of (X, @)

into (Y, W), it follows from Proposition 4.5 that « is a relatively intuitionistic fuzzy continuous mapping of (o (B),
®,—1@) into (B, Ws ). Note that there exists an IFS V in Wg such that o™*(V ) = U . Then

wa—rlw)(X) = Hu (ar (X)) = Hu (X *@) = le—1(v)(X *a)
=My (a(x *@)) = Py (a(x) * (@)

and
ya—rlu)(X = ypu(@r(x)) =yu (X *a) = y—1v)(x *a)

= v (a(x @) = v (a(x) *a()).
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Since B is an intuitionistic fuzzy topological d-algebrain'Y , the mapping
br :(B,¥s)— (B, ¥e),y—y *b
is relatively intuitionistic fuzzy continuous for every b €Y . Hence
Ha=rl)(X) = v (a(x) *a(@)) = kv ((@)r (a(x)))

Hata) v (X)) = Mo Lia v )(X)

and

w (@(x) *a(@)) = yv (a(@)r (a(x)))

ya—rlw)(X)

Yat@ v )(@(X)) = 7a L@ v )(X).

Therefore a (U ) = a *(a(a) +(V)), and so
a (U)NatB)=a(a(a) (V) Na'(B)
is an IFS in ®,—1@). This completes the proof.
Theorem 4.8. Given d-algebras X and Y, and a d-isomorphism « of Xto Y , let ® and ¥ be the IFTs on X and Y
respectively such that a(®) = W. If D is an intuitionistic fuzzy topological d-algebra in X , then a(D) is an
intuitionistic fuzzy topological d-algebra in Y .
Proof. It is sufficient to show that the mapping

br : (a(D), Yup)) — (¢(D), Yup)), y =y *b

is relatively intuitionistic fuzzy continuous for each b €Y . Let Up be an IFS in ®p . Then there exists an IFS U
in @ such that Up = U N D. Since a is one-one, it follows that

o(Up)=a(UND)=a(U) N a(D)
which is an IFS in W, p). Vyp) be an IFS in V().
This shows that « is relatively intuitionistic fuzzy open. Let The surjectivity of o
implies that for each b €Y there exists

a € X such that b = a(a). Hence

Mo (b (Vo) ) T P He(@)  (Vao) )) W T (@) (Vao) )

Hrao) (a(@)r (a(X))) = Hra) (a(X) * a(a))
"V,(0) (alx 4 @)= “a‘l(Va(D) )(x %@

Mo (Vu() )@r 0= My~ — 1 o™
and
0tV ) T Ta N a(@) P (Va)) = Ta(@) (Vo) @
= yra©) (@(@)r (X)) = yra) (a(X) * a(a))

= W) D=7V ) )&+

Yo (V) )@r = 75— Liraoy n®
Therefore a (b (Vup) = a (o (V). By hypothesis, the mapping

ar I(D,(DD)—>(D, CDD),x—>x *a

is relatively intuitionistic fuzzy continuous and « is a relatively intuitionistic fuzzy continuous map: (D, ®p ) —
(a(D), Yup)). Thus

a Y (b~ (V) N D=a (o (Vup))) N DisanIFSin ®p . Since
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o is relatively intuitionistic fuzzy open,
a(oa (b~ (Vaw) N D) = b A (Vup) N a(D) is an IFS in ¥,(p).
This completes the proof.
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