GLOBAL JOURNAL OF ADVANCED ENGINEERING TECHNOLOGIES AND SCIENCES

CHARACTERIZATION OF INTUITIONISTIC FUZZY TOPOLOGICAL D -ALGEBRAS

V. Rajendran*

* Department of Mathematics, Government Arts College, Kulithalai-639120, Bharathidasan University, Tiruchirappalli 24, Tamilnadu, India

ABSTRACT

In this paper the concept of intuitionistic fuzzy topological d- algebras is studied, and some related properties are discussed.

KEYWORDS: d- algebras, fuzzy d- algebras, Intuitionistic fuzzy d- algebras, Intuitionistic fuzzy topological d- algebras.

AMS Subject Classification (2000): 06F35, 03F55, 03E72.03G25.

INTRODUCTION

The idea of intuitionistic fuzzy set was first published by K. T. Atanassov, as a generalization of the notion of fuzzy sets. In this paper, using the Atanassov's idea, we establish the notion of intuitionistic fuzzy *d*-algebras, equivalence relations on the family of all intuitionistic fuzzy *d*-algebras, and intuitionistic fuzzy topological *d*-algebras which are a generalization of the notion of fuzzy topological *d*-algebras, initiated by Jun and Kim. We investigate several properties, and show that the *d*-homomorphic image and preimage of an intuitionistic fuzzy topological *d*-algebra.

PRELIMINARIES

Definition 2.1 A *d-algebra* is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

(I)	x * x = 0,
(II)	0 * x = 0,
	x * y = 0 and $y * x = 0$ imply
(III)	x = y

for all x, y, z in X.

A non-empty subset N of a d-algebra X is called a d-subalgebra of X if $x * y \in N$ for any x, $y \in N$. A mapping α : $X \to Y$ of d-algebras is called a d-homomorphism if $\alpha(x * y) = \alpha(x) * \alpha(y)$ for all x, $y \in X$.

Definition 2.2 An *intuitionistic fuzzy set* (IFS) *D* in *X* is an object having the form

$$D = \{ x, \mu_D(x), \gamma_D(x) | x \in X \}$$

where the functions $\mu_D : X \to [0, 1]$ and $\gamma_D : X \to [0, 1]$ denote the degree of membership (namely $\mu_D(x)$) and the degree of nonmembership (namely $\gamma_D(x)$) of each element $x \in X$ to the set D, respectively, and $0 \le \mu_D(x) + \gamma_D(x) \le 1$ for each $x \in X$.

For the sake of simplicity, we shall use the notation $D = (x, \mu_D, \gamma_D)$ instead of $D = \{x, \mu_D(x), \gamma_D(x) | x \in X\}$. Let *f* be a mapping from a set *X* to a set *Y*. If

$$B = \{ y, \mu_B(y), \gamma_B(y) \mid y \in Y \}$$

is an IFS in Y, then the *preimage* of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by

$$f^{-1}(B) = \{ x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \qquad | x \in X \},$$

and if $D = \{x, \mu_D(x), \gamma_D(x) | x \in X\}$ is an IFS in X, then the *image* of D under f, denoted by f(D), is the IFS in Y defined by

$$f(D) = \{ y, f_{sup}(\mu_D)(y), f_{inf}(\gamma_D)(y) / y \in Y \},\$$

http://www.gjaets.com/

© Global Journal of Advance Engineering Technology and Sciences

where

and

$$f_{sup}(\mu_D)(y) = \begin{cases} \sup_{x \in f^{-I}(y)} \mu_D(x), & \text{if } f^{-I}(y) = \emptyset, \\ 0, & \text{otherwise,} \end{cases}$$
$$\inf_{x \in f^{-I}(y)} \gamma(x), & \text{if } f^{-I}(y) = \\ x \int_{f^{-I}(y)} D & \emptyset \end{cases}$$
$$f_{inf}(\gamma_D)(y) = \epsilon_1, & \text{otherwise,} \end{cases}$$

for each $y \in Y$

INTUITIONISTIC FUZZY D-ALGEBRAS

Definition 3.1. Let *X* be a *d*-algebra. An IFS, $D = (x, \mu_D, \gamma_D)$ in *X* is called an *intuitionistic fuzzy d-algebra* if it satisfies:

 $\mu_D(x * y) \ge \min\{\mu_D(x), \mu_D(y)\}$ and $\gamma_D(x * y) \le \max\{\gamma_D(x), \gamma_D(y)\}$

for all $x, y \in X$.

Proposition 3.2. If an IFS, $D = (x, \mu_D, \gamma_D)$ in X is an intuitionistic fuzzy d-algebra of X, then $\mu_D(0) \ge \mu_D(x)$ and $\gamma_D(0) \le \gamma_D(x)$ for all $x \in X$.

Proof. Let $x \in X$. Then $\mu_D(0) = \mu_D(x * x) \ge \min\{\mu_D(x), \mu_D(x)\} = \mu_D(x)$ and $\gamma_D(0) = \gamma_D(x * x) \le \max\{\gamma_D(x), \gamma_D(x)\} = \gamma_D(x)$.

Theorem 3.3. If $\{D_i \mid i \in \Lambda\}$ is an arbitrary family of intuitionistic fuzzy d-algebras of X, then $\cap D_i$ is an intuitionistic fuzzy d-algebra of X,

where $\cap D_i = \{x, A\mu_{Di}(x), V\gamma_{Di}(x) | x \in X \}$. *Proof.* Let $x, y \in X$. Then

 $A\mu_{Di}(x * y) \ge A(\min\{\mu_{Di}(x), \mu_{Di}(y)\}) = \min\{\mu_{Di}(x), A\mu_{Di}(y)\}$

and

 $V_{\gamma Di}(x * y) \leq V(\max{\{\gamma_{Di}(x), \gamma_{Di}(y)\}}) = \max{\{\gamma_{Di}(x), V_{\gamma Di}(y)\}}$. Hence $\cap D_i = x, \Lambda \mu_{Di}$, $V_{\gamma Di}$ is an intuitionistic fuzzy *d*-algebra of *X*.

Theorem 3.4. If an IFS $D = (x, \mu_D, \gamma_D)$ in X is an intuitionistic fuzzy d-algebra of X, then so is D, where $D = \{x, \mu_D(x), 1 - \mu_D(x) | x \in X\}$.

Proof. It is sufficient to show that μ_D^- satisfies the second condition in Definition 3.1. Let *x*, *y* $\in X$. Then

$$\mu^{-}_{D}(x * y) = 1 - \mu_{D}(x * y) \leq 1 - \min\{\mu_{D}(x), \mu_{D}(y)\}$$

$$= \max\{1 - \mu_{D}(x), 1 - \mu_{D}(y)\}$$

$$= \max\{\mu^{-}_{D}(x), \mu^{-}_{D}(y)\}.$$

Hence D is an intuitionistic fuzzy d-algebra of X.

Theorem 3.5. If an IFS $D = (x, \mu_D, \gamma_D)$ in X is an intuitionistic fuzzy d-algebra of X, then the sets $X_{\mu} := \{x \in X \mid \mu_D(x) = \mu_D(0)\}$ and $X_{\gamma} := \{x \in X \mid \gamma_D(x) = \gamma_D(0)\}$ are d-subalgebras of X.

Proof. Let $x, y \in X_{\mu}$. Then $\mu_D(x) = \mu_D(0) = \mu_D(y)$, and so

$$\mu_D(x * y) \ge \min\{\mu_D(x), \mu_D(y)\} = \mu_D(0)$$

By using Proposition 3.2, we know that $\mu_D(x * y) = \mu_D(0)$ or equivalently $x * y \in X_{\mu}$. Now let $x, y \in X_{\gamma}$. Then

http://www.gjaets.com/ © Global Journal of Advance Engineering Technology and Sciences

$$\gamma_D (x * y) \le \max\{\gamma_D (x), \gamma_D (y)\} = \gamma_D (0)$$

and by applying Proposition 3.2 we conclude that $\gamma_D (x * y) = \gamma_D (0)$ and hence $x * y \in X_{\gamma}$.

Definition 3.6. Let $D = (x, \mu_D, \gamma_D)$ be an IFS in X and let $t \in [0, 1]$. Then the set $U(\mu_D, t) := \{x \in X \mid \mu_D(x) \ge t\}$ (resp. $L(\gamma_D, t) := \{x \in X \mid \gamma_D(x) \le t\}$) is called a μ -level t-cut (resp. γ -level t-cut) of D.

Theorem 3.7. If an IFS $D = (x, \mu_D, \gamma_D)$ in X is an intuitionistic fuzzy d-algebra of X, then the μ -level t-cut and γ -level t-cut of D are d-subalgebras of X for every $t \in [0, 1]$ such that $t \in \text{Im}(\mu_D) \cap \text{Im}(\gamma_D)$, which are called a μ -level d-subalgebra and a γ -level d-subalgebra respectively.

Proof. Let $x, y \in U(\mu_D, t)$. Then $\mu_D(x) \ge t$ and $\mu_D(y) \ge t$. It follows that $\mu_D(x * y) \ge \min\{\mu_D(x), \mu_D(y)\} \ge t$ so that $x * y \in U(\mu_D, t)$. Hence $U(\mu_D, t)$ is a *d*-subalgebra of *X*. Now let $x, y \in L(\gamma_D, t)$. Then $\gamma_D(x * y) \le \max\{\gamma_D(x), \gamma_D(y)\} \le t$ and so $x * y \in L(\gamma_D, t)$. Therefore $L(\gamma_D, t)$ is a *d*-subalgebra of *X*.

Theorem 3.8 Let $D = (x, \mu_D, \gamma_D)$ be an IFS in X such that the sets $U(\mu_D, t)$ and $L(\gamma_D, t)$ are d-subalgebras of X. . Then $D = (x, \mu_D, \gamma_D)$ is an intuitionistic fuzzy d-algebra of X.

Proof. Assume that there exist x_0 , $y_0 \in X$ such that $\mu_D(x_0 * y_0) < \min\{\mu_D(x_0), \mu_D(y_0)\}$. Let

 $\overline{\mu}$

$$t\boldsymbol{\theta} := 2 \ \mu D \ (x\boldsymbol{\theta} \ast y\boldsymbol{\theta}) + \min\{\mu D \ (x\boldsymbol{\theta}), \ \mu D \ (y\boldsymbol{\theta})\}.$$

Then $\mu_D(x_0 * y_0) < t_0 < \min\{\mu_D(x_0), \mu_D(y_0)\}$ and so $x_0 * y_0 \in U(\mu_D, t_0)$, but $x_0, y_0 \in U(\mu_D, t_0)$. This is a contradiction, and therefore

 $\mu_D(x * y) \ge \min\{\mu_D(x), \mu_D(y)\} \text{ for all } x, y \in X.$

Now suppose that

 $\gamma_D(x_0 * y_0) > \max\{\gamma_D(x_0), \gamma_D(y_0)\}$ for some $x_0, y_0 \in X$

. Taking

 $\overline{\gamma} s \boldsymbol{\theta} := 2 \ \gamma D \ (x \boldsymbol{\theta} \ast y \boldsymbol{\theta}) + \max\{\gamma D \ (x \boldsymbol{\theta}), \ \gamma D \ (y \boldsymbol{\theta})\} \ ,$

then $\max\{\gamma_D(x_0), \gamma_D(y_0)\} < s_0 < \gamma_D(x_0 * y_0)$. It follows that $x_0, y_0 \in L(\gamma_D, s_0)$ and $x_0 * y_0 \in L(\gamma_D, s_0)$, a contradiction. Hence

$$\gamma_D(x * y) \leq \max\{\gamma_D(x), \gamma_D(y)\}$$

for all $x, y \in X$. This completes the proof.

Theorem 3.9. Any *d*-subalgebra of *X* can be realized as both a μ -level *d*-subalgebra and a γ -level *d*-subalgebra of some intuitionistic fuzzy *d*-algebra of *X*.

Proof. Let S be a d-subalgebra of X and let μ_D and γ_D be fuzzy sets in X defined by

$$\mu_D(x) := t, \text{ if } x \in S, \\0, \text{ otherwise,} \\\gamma_D(x) := s, \text{ if } x \in S, \\1, \text{ otherwise,} \end{cases}$$

and

for all $x \in X$ where t and s are fixed numbers in (0, 1) such that t + s < 1. Let x, $y \in X$. If x, $y \in S$, then $x * y \in S$. Hence $\mu_D(x * y) = \min\{\mu_D(x), \mu_D(y)\}$ and $\gamma_D(x * y) = \max\{\gamma_D(x), \gamma_D(y)\}$. If at least one of x and y does not belong to S, then at least one of $\mu_D(x)$ and $\mu_D(y)$ is equal to 0, and at least one of $\gamma_D(x)$ and $\gamma_D(y)$ is equal to 1. It follows that

$$\mu_D(x * y) \ge 0 = \min\{\mu_D(x), \mu_D(y)\},\$$

$$\gamma_D (x * y) \le 1 = \max\{\gamma_D (x), \gamma_D(y)\}.$$

Hence $D = (x, \mu_D, \gamma_D)$ is an intuitionistic fuzzy *d*-algebra of *X*. Obviously, $U(\mu_D, t) = S = L(\gamma_D, s)$. This completes the proof.

Theorem 3.10. Let α be a d-homomorphism of a d-algebra X into a d-algebra Y and B an intuitionistic fuzzy dalgebra of Y. Then $\alpha^{-1}(B)$ is an intuitionistic fuzzy d-algebra of X.

Proof. For any $x, y \in X$, we have

Hence $\alpha^{-1}(B)$ is an intuitionistic fuzzy *d*-algebra in *X*.

 $\mu_{\alpha} - \mathbf{1}_{(B)}(x * y) = \mu_B (\alpha(x * y)) = \mu_B (\alpha(x) * \alpha(y)) \ge \min\{\mu_B (\alpha(x)), \mu_B (\alpha(y))\}$

1) $\min\{\mu_{\alpha} - \mathbf{1}_{(B)}(x), \mu_{\alpha} - \mathbf{1}_{(B)}(y)\}$

and

 $\begin{array}{ll} \gamma_{a}-\boldsymbol{I}_{(B)}(x \ast y) &=& \gamma_{B}\left(\alpha(x \ast y)\right) = \gamma_{B}\left(\alpha(x) \ast \alpha(y)\right) \\ &-& \max\{\gamma_{B}\left(\alpha(x)\right), \gamma_{B}\left(\alpha(y)\right)\} \\ &1. & \max\{\gamma_{a}-\boldsymbol{I}_{(B)}(x), \gamma_{a}-\boldsymbol{I}_{(B)}(y)\}. \end{array}$

Theorem 3.11. Let α be a d-homomorphism of a d-algebra X onto a d-algebra Y. If $D = (x, \mu_D, \gamma_D)$ is an intuitionistic fuzzy d-algebra of X, then $\alpha(D) = y$, $\alpha_{sup}(\mu_D)$, $\alpha_{inf}(\gamma_D)$ is an intuitionistic fuzzy d-algebra of Y.

Proof. Let $D = (x, \mu_D, \gamma_D)$ be an intuitionistic fuzzy topological *d*-algebra in *X* and let $y_I, y_2 \in Y$. Noticing that $\{x_I * x_2 | x_I \in \alpha^{-1}(y_I) \text{ and } x_2 \in \alpha^{-1}(y_2)\} \subseteq \{x \in X | x \in \alpha^{-1}(y_I * y_2)\},\$

we have

and

 $\alpha_{sup}(\mu_D)(y_1 * y_2)$ 1. $\sup\{\mu_D(x) \mid x \in \alpha^{-1}(y_1 * y_2)\}$ $\sup\{\mu_D(x_1 * x_2) \mid x_1 \in \alpha^{-1}(y_1) \text{ and } x_2 \in \alpha^{-1}(y_2)\}$ \geq sup min{ $\mu_D(x_1)$, $\mu_D(x_2)$ } / $x_1 \in \alpha^{-1}(y_1)$ and $x_2 \in \alpha^{-1}(y_2)$ \geq min $\sup\{\mu_D(x_1) \mid x_1 \in \alpha^{-1}(y_1)\}, \sup\{\mu_D(x_2) \mid x_2 \in \alpha^{-1}(y_2)\}$ = $\min\{\alpha_{sup}(\mu_D)(y_1), \alpha_{sup}(\mu_D)(y_2)\}$ = $\alpha_{inf}(\gamma_D)(y_1 * y_2)$ $\inf\{\gamma_D(x) \mid x \in \alpha^{-1}(y_1 * y_2)\}$ = $\inf\{\gamma_D(x_1 * x_2) \mid x_1 \in \alpha^{-1}(y_1) \text{ and } x_2 \in \alpha^{-1}(y_2)\}$ \leq inf max{ $\gamma_D(x_1)$, $\gamma_D(x_2)$ } / $x_1 \in \alpha^{-1}(y_1)$ and $x_2 \in \alpha^{-1}(y_2)$ } \leq max $\inf\{\gamma_D(x_1) \mid x_1 \in \alpha^{-1}(y_1)\}, \inf\{\gamma_D(x_2) \mid x_2 \in \alpha^{-1}(y_2)\}$ = $\max\{\alpha_{inf}(\gamma_D)(y_1), \alpha_{inf}(\gamma_D)(y_2)\}.$ = =

Hence $\alpha(D) = y$, $\alpha_{sup}(\mu_D)$, $\alpha_{inf}(\gamma_D)$ is an intuitionistic fuzzy *d*-algebra in *Y*.

http://www.gjaets.com/

INTUITIONISTIC FUZZY TOPOLOGICAL D-ALGEBRAS

Coker[3] generalized the concept of fuzzy topological space, first initiated by Chang [2] to the case of intuitionistic fuzzy sets as follows.

Definition 4.1 An *intuitionistic fuzzy topology* (IFT for short) on a nonempty set X is a family Φ of IFSs in X satisfying the following axioms:

(T1) $0_{\sim}, 1_{\sim} \in \Phi$,

(T2) $G_1 \cap G_2 \in \Phi$ for any $G_1, G_2 \in \Phi$,

(T3) $G_i \in \Phi$ for any family $\{G_i : i \in J\} \subseteq \Phi$. $i \in J$

In this case the pair (X, Φ) is called an *intuitionistic fuzzy topological space* (IFTS for short) and any IFS in Φ is called an *intuitionistic fuzzy open set* (IFOS for short) in X.

Definition 4.2 Let (X, Φ) and (Y, Ψ) be two IFTSs. A mapping $f: X \to Y$ is said to be *intuitionistic fuzzy coninuous* if the preimage of each IFS in Ψ is an IFS in Φ ; and f is said to be *intuitionistic fuzzy open* if the image of each IFS in Φ is an IFS in Φ .

Definition 4.3. Let *D* be an IFS in an IFTS (X, Φ) . Then the *induced intuitionistic fuzzy topology* (IIFT for short) on *D* is the family of IFSs in *D* which are the intersection with *D* of IFOSs in *X*. The IIFT is denoted by Φ_D , and the pair (D, Φ_D) is called an *intuitionistic fuzzy subspace* of (X, Φ) .

Definition 4.4. Let (D, Φ_D) and (B, Ψ_B) be intuitionistic fuzzy subspaces of IFTSs (X, Φ) and (Y, Ψ) , respectively, and let $f: X \to Y$ be a mapping. Then f is a mapping of D into B if $f(D) \subset B$. Furthermore, f is said to be *relatively intuitionistic fuzzy continuous* if for each IFS V_B in Ψ_B , the intersection $f^{-1}(V_B) \cap D$ is an IFS in Φ_D ; and f is said to be *relatively intuitionistic fuzzy open* if for each IFS U_D in Φ_D , the image $f(U_D)$ is an IFS in Ψ_B .

Proposition 4.5. Let (D, Φ_D) and (B, Ψ_B) be intuitionistic fuzzy subspaces of IFTSs (X, Φ) and (Y, Ψ) respectively, and let f be an intuitionistic fuzzy continuous mapping of X into Y such that $f(D) \subset B$. Then f is relatively intuitionistic fuzzy continuous mapping of D into B.

Proof. Let V_B be an IFS in Ψ_B . Then there exists $V \in \Psi$ such that $V_B = V \cap B$. Since f is intuitionistic fuzzy continuous, it follows that $f^{-1}(V)$ is an IFS in Φ . Hence

$$f^{-1}(V_B) \cap D = f^{-1}(V \cap B) \cap D = f^{-1}(V) \cap f^{-1}(B) \cap D = f^{-1}(V) \cap D$$

is an IFS in Φ_D . This completes the proof.

For any *d*-algebra *X* and any element $a \in X$ we use a_r to denote the self map of *X* defined by $a_r(x) = x * a$ for all $x \in X$.

Definition 4.6. Let *X* be a *d*-algebra, Φ an IFT on *X* and *D* an intuitionistic fuzzy *d*-algebra with IIFT Φ_D . Then *D* is called an *intuitionistic fuzzy topological d-algebra* if for each $a \in X$ the mapping $a_r : (D, \Phi_D) \to (D, \Phi_D)$, $x \to x * a$, is relatively intuitionistic fuzzy continuous.

Theorem 4.7. Given d-algebras X and Y, and a d-homomorphism $\alpha : X \to Y$, let Φ and Ψ be the IFTs on X and Y respectively such that $\Phi = \alpha^{-1}(\Psi)$. If B is an intuitionistic fuzzy topological d-algebra in Y, then $\alpha^{-1}(B)$ is an intuitionistic fuzzy topological d-algebra in X.

Proof. Let $a \in X$ and let U be an IFS in $\Phi_{\alpha} - \mathbf{1}_{(B)}$. Since α is an intuitionistic fuzzy con-tinuous mapping of (X, Φ) into (Y, Ψ) , it follows from Proposition 4.5 that α is a relatively intuitionistic fuzzy continuous mapping of $(\alpha^{-1}(B), \Phi_{\alpha} - \mathbf{1}_{(B)})$ into (B, Ψ_B) . Note that there exists an IFS V in Ψ_B such that $\alpha^{-1}(V) = U$. Then

$$\mu_{\mu a} - r \mathbf{1}_{(U)}(x) = \mu_U (a_r (x)) = \mu_U (x * a) = \mu_a - \mathbf{1}_{(V)}(x * a)$$
$$= \mu_V (\alpha(x * a)) = \mu_V (\alpha(x) * \alpha(a))$$

and

$$\gamma_a - {}_r \boldsymbol{I}_{(U)}(x = \gamma_U(a_r(x)) = \gamma_U(x * a) = \gamma_a - \boldsymbol{I}_{(V)}(x * a)$$

 $= \gamma_V(\alpha(x * a)) = \gamma_V(\alpha(x) * \alpha(a)).$

http://www.gjaets.com/

© Global Journal of Advance Engineering Technology and Sciences

Since B is an intuitionistic fuzzy topological d-algebra in Y, the mapping

$$b_r : (B, \Psi_B) \rightarrow (B, \Psi_B), y \rightarrow y * b$$

is relatively intuitionistic fuzzy continuous for every $b \in Y$. Hence

$$\mu_a - {}_r \mathbf{1}_{(U)}(x) = \mu_V(\alpha(x) * \alpha(a)) = \mu_V(\alpha(a)_r(\alpha(x)))$$

$$= \mu_{\alpha(a)}^{-1} \mu_{\alpha(a)}(\alpha(x)) = \mu_{\alpha} - \mathbf{1}_{(\alpha(a)}^{-1} \mu_{(V)}(x)$$

and

$$\gamma_a - {}_r \boldsymbol{I}_{(U)}(x) = \gamma_V \left(\alpha(x) * \alpha(a) \right) = \gamma_V \left(\alpha(a)_r \left(\alpha(x) \right) \right)$$

$$= \gamma_{\alpha(a)}^{-1} \gamma_{(V)}(\alpha(x)) = \gamma_{\alpha} - \mathbf{1}_{(\alpha(a)}^{-1} \gamma_{(V)})(x).$$

Therefore $a_{r}^{-1}(U) = \alpha^{-1}(\alpha(a)_{r}^{-1}(V))$, and so

$$a_{r}^{-1}(U) \cap a^{-1}(B) = a^{-1}(a(a)_{r}^{-1}(V)) \cap a^{-1}(B)$$

is an IFS in Φ_{α} – $I_{(B)}$. This completes the proof.

Theorem 4.8. Given d-algebras X and Y, and a d-isomorphism α of X to Y, let Φ and Ψ be the IFTs on X and Y respectively such that $\alpha(\Phi) = \Psi$. If D is an intuitionistic fuzzy topological d-algebra in X, then $\alpha(D)$ is an intuitionistic fuzzy topological d-algebra in Y.

Proof. It is sufficient to show that the mapping

$$b_r : (\alpha(D), \Psi_{\alpha(D)}) \to (\alpha(D), \Psi_{\alpha(D)}), y \to y * b$$

is relatively intuitionistic fuzzy continuous for each $b \in Y$. Let U_D be an IFS in Φ_D . Then there exists an IFS U in Φ such that $U_D = U \cap D$. Since α is one-one, it follows that

$$\alpha(U_D) = \alpha(U \cap D) = \alpha(U) \cap \alpha(D)$$

which is an IFS in $\Psi_{\alpha(D)}$. $V_{\alpha(D)}$ be an IFS in $\Psi_{\alpha(D)}$. This shows that α is relatively intuitionistic fuzzy open. Let The surjectivity of α implies that for each $b \in Y$ there exists

 $a \in X$ such that $b = \alpha(a)$. Hence

$$\begin{split} \mu \alpha^{-1} (b^{-1}(V_{a(D)}))^{(x)} &= & \mu \alpha^{-1} (\alpha(a)^{-1}_{r}(V_{a(D)}))^{(x)} = \mu \alpha(a)^{-1}_{r}(V_{a(D)})^{(a(x))} \\ &= & \mu_{Va(D)} (\alpha(a)_{r} (\alpha(x))) = \mu_{Va(D)} (\alpha(x) * \alpha(a)) \\ &= & \mu V_{a(D)} (\alpha(x * a)) = \mu \alpha^{-1} (V_{a(D)})^{(x * a)} \\ &= & \mu \alpha^{-1} (V_{a(D)})^{(a} r^{(x))} = \mu \alpha^{-1}_{a} (\alpha(a)^{-1}_{r}(V_{a(D)}))^{(x)} \\ &\gamma \alpha^{-1} (b^{-1}_{r}(V_{a(D)}))^{(x)} &= & \gamma \alpha^{-1} (\alpha(a)^{-1}_{r}(V_{a(D)}))^{(x)} = \gamma \alpha(a)^{-1}_{r}(V_{a(D)})^{(a(x))} \\ &= & \gamma V_{a(D)} (\alpha(x * a)) = \gamma \alpha^{-1} (V_{a(D)})^{(x * a)} \\ &= & \gamma V_{a(D)} (\alpha(x * a)) = \gamma \alpha^{-1} (V_{a(D)})^{(x * a)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(a} r^{(x))} = \gamma \alpha^{-1} (\alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (V_{a(D)})^{(x * a)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\gamma \alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\gamma \alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\gamma \alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\gamma \alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\gamma \alpha^{-1}_{r}(V_{a(D)}))^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\gamma \alpha^{-1}_{r}(V_{a(D)})^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\gamma \alpha^{-1}_{r}(V_{a(D)})^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(ar + a)} = \gamma \alpha^{-1} (\gamma \alpha^{-1}_{r}(V_{a(D)})^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(x)} = \gamma \alpha^{-1} (V_{a(D)})^{(x)} \\ &= & \gamma \alpha^{-1} (V_{a(D)})^{(x)} = \gamma \alpha^{-1} (V_{a(D)})^{(x)} \\ &= & \gamma \alpha^{-1}$$

Therefore $a^{-1}(b^{-1}(V_{a(D)}) = a^{-1}(a^{-1}(V_{a(D)}))$. By hypothesis, the mapping

$$a_r : (D, \Phi_D) \to (D, \Phi_D), x \to x * a$$

is relatively intuitionistic fuzzy continuous and α is a relatively intuitionistic fuzzy continuous map: $(D, \Phi_D) \rightarrow (\alpha(D), \Psi_{\alpha(D)})$. Thus

$$\alpha^{-1}(b_r^{-1}(V_{\alpha(D)})) \cap D = a_r^{-1}(\alpha^{-1}(V_{\alpha(D)})) \cap D$$
 is an IFS in Φ_D . Since

http://www.gjaets.com/

© Global Journal of Advance Engineering Technology and Sciences

and

 α is relatively intuitionistic fuzzy open,

 $\alpha(\alpha^{-1}(b^{-1}_r(V_{\alpha(D)})) \cap D) = b^{-1}_r(V_{\alpha(D)}) \cap \alpha(D) \text{ is an IFS in } \Psi_{\alpha(D)}.$

This completes the proof.

REFERENCES

- [1] K. T. Atanassov Intuitionistic fuzzy sets, Fuzzy sets and Systems 35 (1986), 87–96.
- [2] C. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89.
- [4] Y. B. Jun, Fuzzy topological BCK-algebras, Math. Japon. 38(6) (1993), 1059–1063.
- [5] Y. B. Jun and H. S. Kim, On fuzzy topological d-ideals, Math. Slovaca 51(2) (2001), 167–173.
- [6] J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49(3) (1999), 243–251.
- [7] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49(1) (1999), 19–26.
- [8] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.
- [9] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338–353.