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ABSTRACT
| show the veracity of the Legendre conjecture, which says that Yn € N*3p a prime integer such that : n? < p <
(n+ 1)2, remained open since 1833 (date of the Legendre extinction). | show also the veracity of the Euler
conjecture, which says that there is an infinite number of prime numbers of the form n? + 1, remained open since
1760. | do this by using the Schoenfeld inequality that | have showed in my work [4], and by using the same
approach of my papers [5], [6].
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INTRODUCTION
Definition1 : We call the Legendre conjecture the following assertion « For any not null positive integer n,3p a
prime integer such that n? < p < (n + 1)% ».

Definition2 : | call the Euler conjecture the assertion « There is an infinite number of prime numbers of the form
n+1»

History : The Legendre conjecture was announced, by the French Mathematician Adrien-Marie Legendre
(18/9/1752-10/1/1833) (See [11], [12], [13], [14])

The Euler conjecture was announced, in 1760, by the Swiss Mathematician Leonhard Euler (1707-1783) (See
[3]).

In 1912, the German Mathematician Edmund Georg Hermann Landau (14/2/1877-19/2/1938) said in his lecture
[10] delivered before the fifth international congress of Mathematicians at Cambridge that the following four
problems are « unattackable in the actual state of knowledge » :

1-The Goldbach conjecture : that is "vn € N* — {1}3(p, q) two prime integers such that :2n = p + ¢".(l have
showed, on May 2018, this conjecture in [5])

2-The Twin Primes conjecture : that is « it exists an infinite number of prime numbers p such thatp + 2 is
prime » (Ihave showed, on July 2018, this conjecture in [6]).

3-The Legendre conjecture : that is « Yn € N*3p a prime integer such that :n? <p < (n+ 1)% » (It is the
subject of the present paper.)

4- The Euler conjecture : That is « there is an infinite number of prime numbers of the form n? + 1" (It is also
the subject of the present work).

In 1975, the Chinese Mathematician Chen Jingrun (1933-1996) showed in [9] a weak version of the Legendre
conjecture, that is « between n? and (n + 1)? there is always an integer p which is prime or semi-prime » (Recall
that a positive integer p is prime if p = 1 and if its set of divisors is {1,p} and is semi-prime if 3n, m two prime
integers (we can have : n = m) such that p = nm).
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In 1984, the American Polish Mathematician Henryk Iwaniec (Born in October 9, 1947-) and the Hungarian

Mathematician Janos Pintz (Born in December 20, 1950-) showed, in [8], that there is always a prime integer
23

between : n — nso and n.

In 2001, Baker, R.C. ; Hermann, G. ; Pintz, G. and Pintz, J. proved, in [1], that there is always a prime number
21
in the interval [n, n + 0(n20)].

In 2006, The Iranian Mathematician Hassani Mehdi (Born in July 23, 1979-) showed, in [7], that : for infinitely
many n € N, we have :

(n+?  n? (In(n))? 2 2
[ (ln(n+1) ln(n)) ln(ln(n))]_ ((Tl + 1)) 7T(Tl )
(Where [x] denotes the integer part of the real x).
My present paper gives responses to some questions of Hassani Mehdi in [7].

In 2014, Oliveira e Silva, Tomas Herzog, Sieghied Pardi and Silvio showed, in [15], that the Legendre conjecture
is true forany 1 < n < 4.10'8.

The note : the purpose of the present paper is to show the third and the fourth Landau problems by using the
Schoenfeld inequality proved in my work [4] and by using the same methods of my two works [5], [6].

The paper is organized as follows. 81 is an introduction giving the necessary definitions and some History. §2
contains the ingredients of the proofs of our main results. 83 gives the proof of the Legendre conjecture. §4
contains the proof of the Euler conjecture. 86 gives the conclusions and 87 is devoted to the references of the
paper for further reading.
Our main theorems are :

Theorem1 : The Legendre conjecture is true.
Theorem?2 : The Euler conjecture is true.

INGREDIENTS OF THE PROOFS

For a real number x, | denote by [x] the integer part of x, it means the single integer m = [x] suchthat : m < x <
m+1

For A, B two subsets of a set E we noteby A — B = {a € E such that a € A and a & B}

If A is a finite subset, we note by card(A) the number of elements of A.

Propositionl : ([5], [6]) if A, B are finite subsets, then :

(1)B ¢ A = card(A — B) = card(A) — card(B)

(2)B € A = card(B) < card(A)

(3) if (4;)1<i<m Is & finite sequence of finite subsets such that A;nAj =@ fori =+ jthen:

Card(UA D) = Z card(4;)

i=1
Recall that a prime integer is a number p € N* — {1} having for set of divisors the set {1,p}.
We note : P = {p € N, such that p is prime} = {2,3,5,7,11,13,17,19 ... }

Proposition2 :(Euclid (3thd Century before Jésus Christ) [2])P is an infinite strictly increasing sequence

(Pr) ken*
For n € N, we note P,, = {p € P,such that p < n} and n(n) = card(PP,). The function n - m(n) is called the

prime-counting function.

Definition3 : ([5], [6]) if f, g are two real functions defined in the neghborhood of +oo, then :
f = 0(g) in the neighborhood of +c0 & 34 > 03B € R such that :
vt =2 B:|f(t)| < Alg(D)|
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Proposition3 : The prime-counting function n — w(n) is an increasing function but not strictly.

fn dt \/—ln(n)
0 ln(t) 8T

Proposition4 : (The Schoenfeld inequality [4])Vn = 2657 |t(n) —

le.:n(n) = fo’lld(tt)+ 0(nln(n)) for n> 2657

Proposition5 : ([5], [6]) (The intermediate value theorem) If f:[a, b](a < b) —» R is a continuous function.
Then: f(a)f(b) < 0= 3c €]a,b[suchthat: f(c) =0

Proposition6 : we have :
1) lirP X, =10 & Ve>0IpeENVn=pix, =€
n—->+oo

(2) lirll Xpn=SERSVe>0IpeNVn=p:|x,—s|<e€
n-+oo

@) limf(x)=f(a) ®Ve>036§>0:[x —a| <e=>|f(x) — f(a)]
x—a

Proposition? : if I isareal interval, a € I and f:I — R is a function, we have :
(1)f continuous ina & lim f(x) = f(a)
x—a

(2) f continuous in a & (V(x,) areal sequence:( lirp X, =a) = ( lirg flxy) = f(a)))
n—-+oo n—+oo
(3) f continuous on I & f continuous in any element a € [

Proposition8 : ([5],[6]) for (x,), any sequence in R, we have :
(Dliminf (x,)=Suppeninfis=n(x;) exists always in [—oco, +-o0]
(2) If (y) is a convergent sequence, then :
liminf (x, + y,) = liminf (x,) + lirP Vn
n—-+oco

(3) If (x,) < [a, b] is bounded, we have : a < liminf(x,) < b

o _ Ve>0IneNVk=>n:x, >s—¢
(liminf(x,) =s €R < {Ve >0vneNIk>nix, <s+e
(5) if y,, = 0vn, we have : liminf (x,y,) = liminf (x,)liminf (y,)
6)liminf (x,) = +0 & lirP X, = 400

n—-+oo

Proposition9 : ([5], [6]) (i) any non empty part Eof N has a minimal element : min(E) characterized by :
min(E) € E,Vx € E:x = min(E) and min(E) = 0 ormin(E) — 1 ¢ E

(ii) any non empty part Eof N, bounded above, has a maximal element :max(E), max(E) is characterized by :
max(E) € E,Vx € E:x < max(E) and max(E) + 1 ¢ E

Proposition10 : ([5], [6]) any sequence (t,) < [a, b] (a bounded real interval), has a convergent subsequence,
denoted also(t;), such that : lim ty =t € [a,b]

Proposition11 : ([5], [6]) (the Hopltal rule), for derivable functions f, g:if 11m |s the indefinite form— then :

@ _ @
tE+w g(®) tl—>+oo.g '@’

, the process can be repeated in the same conditions up determlnatlon

PROOF OF THE LEGENDRE CONJECTURE
Theoreml : (The Legendre is true)vn € N*3p € P such that :n? <p < (n + 1)2

Proof : (of the theorem)

FormeN", Let:A, ={peEP,n?<p<(n+1)?

It is evident that theoreml is showed if we prove : vn € N* 4,, # @ i.e: card(4,) >0
The proof of theorem1 will be deduced from the lemmas below.

Lemmal : We have :

card(4,) = t((n + 1)%) — n(n?)
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Proof : (of lemmal)

The result follows by definition of the prime-counting function n — m(n) using the assertion (1) of proposition

(1) and the fact that : A, = P(,,,1y2 — P,z (because a prime number cannot be a square)

Lemma2 : forn = V2657, we have :
f(”“)z dt  (m+Dln(n+1)
n2 In(¢t) 2m
I.e. with the notation of definition3 :
card(4,) = f(nH) XL 0((n+1)In(n + 1)) forn > V2657

In(t)
With |

< card(A) < f("“)z dt (n+ Din(n+1)
scard() < | 2

0((n+1)In(n+1)) | 1
(n+1) In(n+1) 41T

Proof : (of lemma3)
*By the Schoenfeld inequality, we have : for n > v2657
(n+1)2i _ J(+1)2In((n+1)?) 2 (n+1)2i J(+1)2In((n+1)?)
f In(t) 81 <n((n+1%) < f In(t) + 8T
n? dt  n2in(m?) 2 n? J_ln(nz)
-J, In(t) 8n < -n(()?*) < - f ln(t) 8n
*S0, by summation of the inequalities of the precedent system, we have :

2 2
f(n+1) _dt  (n+Din(n+1) < f(n+1) _dt  (n+Din(n+1) nln(n) < card(An) — TL’((Tl + 1)2) _ TL’(TLZ) <

n? In(t) 2m n? In(t) an

m+1)? dt (n+1)In(n+1) = nln(n) (n+1)? dt (n+1)1n(n+1)
> + </ —_
n In(t) AT 4T n In(t) 21

*The result follows.

Lemma4 : we have :

n+1)? dt 1(m+D3-n?\ _ 2n+1
ap € Nvn 2 p: card(An) >3 f In(t) = 2( 2In(n+1) ) - 4In(n+1) >0
Proof :(of lemma4)

. . 2n+1 (n+1)? dt 2n+1
Claim1 : we have : — e S <l T 5= 2
Proof : (of claiml)

The result follows because :
1 _ 1 ; 1 _ 1 2 2
In((n+1)2) ~ 2In(n+1) = In(t) = In(n2) ~ 2In(n) vt € [n% (n +1)7]
f(n+1)2
Claim2: we have : lim no.
n-+o (n+1)1n(n+1)
Proof : (of claim2)
The result follows by letting: n — +o0, in the below relation deduced from claim1l :
f(n+1)2 dt
0 < nz  In(t) 2n+1
T (n+Din(n+1) ~ 2(n+ DIn(n + 1) In(n)
Because : lim — 1t =
n-+o 2(n+1) In(n+1)In(n)

. . i L card(An) T o0(Vn+1ln(,n+1)) 1
Claim3 : we have : 0 < liminf (—\/mln(rwl)) = llmmf(—\/mln(ml) ) <5~
Proof : (of claim3)

*By lemma2 and the assertion (2) of lemma6, we have :
d(An) i ((n+1) In(n+1))
.. card(An In() O((n+1) In(n+1
llmlnf (\/n+1ln(n+1)) llmlnf((n+1) In(n+1) (n+1) In(n+1) )
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L In(0) .. o((n+)In(n+1))\ _ .. o((n+D) In(n+1))\ _ ;. . o((n+1) In(n+1))
_nliToo( (n+1)1n(n+1)) + llmlTLf( (n+1) In(n+1) ) =0+ llmlnf( (n+1)In(n+1) ) - llmlnf( (n+1) In(n+1) )
*The bounds are obtained by application of the assertion (3) of proposition6, because for any n = /2657 :

(n+1)Inn+1) 2 0 and (n+1)In(n+1) = (By lemma2)

n+1)2 dt
[V

Claim4 : we have :

L. card(An)
(1) liminf <f(n+1TZt> >1
n2 n(®).

(2) I3p e NVn = p card(4,) =

lf(n+1)2 dt
2 Jn? In(t)

Proof : (of lemma4)
(1) We have by the assertion (5) of proposition6, lemma2 and claim3:

.. card(An) \ _ ;. . o((n+1)In(n+1)) | _ L. 0((n+1) In(n+1))
liminf <—(n+1)2 o ) = liminf (1 + =z a ) =1+ llmmf(—(nﬂ)2 T
n2 n(o. n2 In(® n2 In(t)

_ .. 0((n+1) In(n+1))\ [ (n+1) In(n+1) .. o((m+1) In(n+1)) ;. . (n+1) In(n+1)
=1+liminf ( (D In(mtD) )( (G2 ar ) >1+ llmlnf(—(n+1) ntD )llmmf(—(,zm)z ) =1
n In(t) n In(t)

(2) we can consider the two below cases

(n+1)2 dt
n2 In(t)

First case : if liminf <M> =+

*By the assertion (6) of proposition 8, we have : lim (%) = +too,
n—-+oo —_
n2 In(t)

*So0, by the assertion (1) of proposition 6 (the definition of this limit written fore = i): we have :

card(An) 1
m+1)2 dt = 2 >0
n? In(t)

IpeNvVn=p

(n+1)2 dt
n2 In(t)

*By the assertion (1) of claim4, we have :s > 1
*By the assertion (4) of proposition (8), written fore = % we have :

Second case : if f liminf <M> =seR

. card(4,,) 1 - 1 1
WENRE oy @t T 7221737
n? In(t)

*This finishes the proof of claim4.
Lemma5 : vn € N* card(4,) >0

Proof : (of lemma5)

Consider the subsets :
A={p€eN,vn=p:card(4,) > 0}
B ={p € N,an = p:card(4,) = 0}
C={neN,card(4,) =0}

Claim5 : the subset A has a minimal element:m = min(4) =1, with: Vn = m:card(4,) >0 and
card(Apm-1) =0

Proof : (of claim5)
*By the assertion (2) of claim4 : the subset A # @, so the result follows by application of the assertion (i) of
proposition9.
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*card(4p,) =0=>m=1

Claim6 :wehave: B=N—-4

Proof : (of claim6)
The result follows by definition of A and B.

Claim?7 : B is a finite subset with max(B) = m — 1

Proof : (of claim7)

*By claim5, we have:m —1 € Band m ¢ B

*Suppose :Ip € Bsuchthat:p >m—1, ie.:p>m.So.p€EA.
*This being contradictory : Vp € B:p<m —1

*S0, by the assertion (ii) of proposition9 : m — 1 = max(B)

Claim8: A={mm+1m+2,..}={peN,p=m}

Proof : (of claim8)
*wehave:p € A= Vn=p:card(4,) >0=>vVn=p+1=p:card(4,) >0=>p+1€A
*So:m=min(A) >A={mm+1m+2,.}={peN,p=m}

Claim9 :we have : B ={0,...m—1}={peN,0<p<m-1}

Proof : (of claim9)
The result is obtained by combination of claim 6 and claim8.

Claiml10: we have: C c B

Proof : (of claim10)
*We have :;p € C = card(Ap) =0=>3In=p=p:card(4,) =0=>p€EB
*The result follows.

Claimll : we have : max(C) =m —1

Proof : (of claim11)

*We have :card(4,,.,) =0=>m—1€Candcard(4,,) >0=>m & C
*CcB=>VvVnelC:n<m-1

*S0, the assertion (ii) of lemma9 gives the result.

Claiml2 : wehave:m =1

Proof : (of claim12)
Suppose :m > 1
The claim 12 will be deduced from the under-claims below.

Under claiml : we have :
Wped, e [Jp]=n
(2)m—1EC(:>\7’pEIP)|m—1—[\/E]|>O

Proof : (of the under-claim1)
1) pedp,ont<p<m+1)?en<./p<n+1e [|/p] =n (by definition of the integer part of a
real)
(2) The result follows immediately by use of the definitions.

Under-claim2 : let:tn <m —1,p e Pand k,r € N*, we have :
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(n = [{p]l < Im =1 -[/p]|
(i)36(n, p, k,7) = @y, €] %g — ~[ such that :

i = I+ D5 = (1= ) (m = 1= [Jpl] + D%

1 2 1 .
(iiNda = a, e];,g — ;[ such that :

a(in = [Pl ™ = (1= ) (|m — 1 - [{p] s

(ivyvpeP|n—[/p]| >0
(vyvne{0,1..,m—1} = B:card(4,) =0
(vijB=C

Proof : (of the under-claim2)
() We have :

n<m-—1=n(n-2[/p]) < (m-1Dm-1-2[/p]
= n? = 2n[\/p] + ([ypD* < (m— D? = 20m = D[p] + ([Vp)?
=>mn-[ypDi<m-1-[/ph?=In—[/p]l < Im-1-[{p]l

(if)Consider the continuous function f; ,- defined on [%% - %], by :

12 1.2
fer @ = t(n = [Ypl| + 37" = A= O(Im— 1 - [Jp]| + D"
We have :
*By the assertion (i) of the under-claim2 :

for Q) =3 Bl + =3I 1 1142 <0

1
fir (g - %) = (2 - %)(|n - [V7ll +%)% - G + %) (|m -1-[J/p]|+ %)r >0 for a great positive integer r,
because by the assertion (2) of proposition6 (written for € = %), we have :
) 2 1 2 1 1 2 1 1 1 1
Jim fir(3-7)=33=32 N2 N fiy (5-7) 255 =5 >0
*So0, by the intermediate value theorem (See proposition5), we have :
Jay., e]%,g —%[ Suchthat : fi (@) = 0
(iii)*By proposition10, the bounded sequence (ay.,), (for a fixed r and a variablek), has a convergent
subsequence, denoted also :(ay,,-),- such that :

W N
S| e

1
lim a,,=a, =a € [=,
ko400 k,r T [2

]

*By proposition7, we have :

12 12
JAm fir(a,) = 0o a(ln = [fp]| + D37 = 1 - (m -1 - [/p]| +3™°
(iv) So, the result follows by combination of the assertions (2) of under-claim1.
(v) and (vi) follows immediately.

Under-claim3 :m =1

Proof : (of the under-claim3)

*We have:1 ¢ C

*So, by the assertion (vi) of under-claim2 : m — 1 = max(C) < 1 ©& m < 2 © m < 1, this being contradictory
with our hypothesis : "m > 1" we have effectively showed that : m = 1

PROOF OF THE EULER CONJECTURE

Theorem?2 : (The Euler conjecture is true) we have, there is an infinite number of prime integers of the form n? +
1.

Proof : (of theorem2)

Let :E = {p € P,3n € N such thatp = n? + 1},

For:meN*— {1}, Let:E,, ={p € P,,,An € N,p = n? + 1}

Forn € N*,P,2,, = {p € P,p < n?+ 1}
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F,={pePp=n2+1}

Euler conjecture is that the subset E is infinite.

The proof of theorem2 will be deduced from the lemmas below.

Lemmab : we have :vm e N* — {1} E,, Cc E

Proof : (of lemma6)
The result follows because : vm € N* — {1}:P,, c P

Lemma7 : we have :
lifn?+1€P
— 2 — 2) =
()card(E,) = XM n(n? + 1) — n(n?)

Proof : (of lemma7)

(D*Wehave :F, ={peP,n?<p<n?+1}=Pp2,, —P,p

*So0, by the assertion (1) of propositionl : card(F,)=card(P,z2,,) — card(P,2)
=n(n? + 1) — n(n?)

(2)*Wehave 1 E,, = U, F, withF,nF, =0 forn# k

*S0, by the assertion (3) of proposition1 :

card(Ey,) = Xnt, card(F,) = X7 (n(n® + 1) — n(n?))

Lemmas8 : we have for great values of m:
—(m — [2657] + 1) ¥ HnonTrD) ‘“(’” D < 0 < 3V (n2 4 1) — n(n?) < ([V2657] + Dn(([V2657] +

1)* +1) < (m — [2657] + 1)V ‘““" Al

Proof : (of lemma8)
The proof follows immediately.

Lemma9 : we have, for great values of m,
n2+1 dt

Sz e s~ 2 (m = [V2657] + DV + TIn(m? + 1) < 7 e (r(n? + 1) —n(n) <
D 4 ey +—(m — [V2657] + 1)¥Vm? + Tin(m? + 1)

In(t)
Proof : (of lemma9)
*By the Schoenfeld inequality we have, for : [V2657] <n<m

n?+1 dt VnZ+1ln(n?+1) n?+1 dt VnZ+1ln(n?+1)
———————<aM*+ D -m() < [, —t+—(—

n?  In(t) 8 In(t) 4m
*S0, by summing, we have :

dt n2+1 dt
N o (m [V2657] + HVm? + 1in(m* + 1) I ez fre o

n2+1 dt

m e vaes Y2 + ln(n +1) <3 Nﬁ](n(n +1)—7t(n2)) Zm VEesT e g
" zes Y2 + 1n(n? + 1) < P @+ (m - [V2657] + 1)Vm? + 1In(m? + 1)

ln(t+n2) AT

1

1

Lemmal0 : we have for great values of m:

card(Ey) = [, Yl s + 0((m — [V2657] + 1)Vm? + 1in(m® + 1))

1n(t+n2)

. 1o((m-[Vze57] 1)V mZin(m?+1)) 4
With : <=
m-[V2657]+1)ym2+1In(m2+1) 2m

Proof : (of lemmal0)
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Noting that :card(E,,) = X™ ,x(n? + 1) — n(n?)) = Zm Nﬁ](n(n +1)— n(nz)) + Z[ ol +1( (n? +

1) — n(nz)), the result is obtained by combination of lemma8 and lemma9.

[iym dc_
Lemmall : We have : lim 0 Xn=(\657lin(e )
- m—+oo (m—[V2657 ]+1)\/m2+11n(m2+1)

Proof : (of lemmall)

The result follows because : In(([V2657])?) < In(t + n?)Vvt € [0,1] and n > [V2657]
dt
f X [V2657] In(t + n?) < 1

~ [V2657] + )VmZ + 1In(m? + 1) ~ ymZ ¥ TIn(m? + DIn(([v2657])")

Lemmal?2 : we have :

< limi card(Ep) ) — Timni
0 < liminf ((m—[\/2657]+1)Jm2+11n(m2+1 Liminf (

0(m—[V2657]+1)ym2+1In(m?+1))
m—[v2657|+1)ym2+1In(m2+1)

) <

2TL’

Proof : (of lemmal2)
The result is obtained by use of the assertions(2), (3) of proposition8, lemmal0 and lemmall.

Lemmal3 : lim =087+ o
—_— " m5+w In(m2?+1)

Proof :(of lemmal3)
By the Hopital rule, we have :
m—[V2657]+1 1 _om?+1

e Tn(mZE 1) mite Zm mite 2m o mie™ T

m?+1

. m at  _
Lemmal4 : we have : 11m f Yo 7e5 —ln(t+n2)_+oo

Proof : (of lemmal3)
a__ o (m-[vV2657+1]

. lym
*We have : fo z:"=[\/2657] In(t+n2) —  In(1+m?)
*So, lemmal3 gives the result by tending m to +

Lemmals : (1) liminf card(Em) > > 1
0 2n—[\/ﬁ]ln(ﬂnz)

(23p e NVm =2 p card(E,,) = Efo X 3657

Proof : (of lemmal5)
(1)By combination of the assertions (4), (5) of proposition 8, lemmal0 and lemmal2, we have successively :

o((m- [\/ﬁ]+1)\/2—+1n(m +1)))
fo n= [m]ln(an)
0((m—[\/m]+1)«/m1n(m +1)) (m [\/ﬁhl)mm(m +1))
m-[V2657]+1)y/m2+11In(m2+1) fozp [mpn(tw)
0((m—[m+1)m1n(m2+1)>> i (ST n? )
(m-[V2657]+1)ym2+11n(m?2+1) fo DN =[vz657)in(e+n?)

dt
In(t+n2)

liminf card(Em) 7 > =1+ liminf(
f n—[x/ﬁ]ln(t#ﬂz)

=1+ liminf(

=1+ liminf(

(2)*Eirst case : liminf ( cardEm) ) = 400
fO n=[v2657]|In(t+n2)

The result is obtained by writing the definition lim ( card(®m) ) = +oo fore = %
fO n=[v2657|In(t+n2)
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Second case : liminf ( . mcard(]E’") - ) =s€eR
fo z:71=[\/m]1n(t+nz)

The result is obtained by writing, for € = % the first relation in the definition (given in the assertion (4) of

card(Ep)

1 dt
Jo Znt[vzes7fin(een?)

*This ends the proof of lemmalb.

proposition8) of : liminf( ) = s € R, noting by the assertion (1) of lemmal5, that : s > 1.

Lemmal6 : we have : (1) lirJr) card(E,,) = +o
m-—+oo
(2)card(E) = +oo

Proof : (of lemmal6)
(1) The result follows by combination of lemmal4 and the assertion (2) of lemmal5.
(2) Suppose contrarily that : card(E) < +oo. By the assertion (2) of propositionl and lemma6, we have :
vm € N* — {1}: E,, € E = card(E,,) < card(E). The contradiction is obtained by tendingm to + oo,
using the assertion (1) of lemmal6.

CONCLUSIONS
My works [5], [6] together with the present paper resolve all the four Landau problems via the Schoenfeld
inequality and via some results of elementary analysis.

Remark :1 want here to give a little modification to my paper [6] entitled « confirmation of the De Polignac and
the Twin primes conjecture » published in the July 2018 issue of the GJAETS:
**|n page 3, replace proposition5, by the new proposition 5 :

Proposition5 : for any sequence(x,),, we have :
(Dliminfx, = suppeninfps,x, eXits always in [—co, + o]
(2Qa < x, <bVn=a<liminfx, <b
(3)liminfx, + liminfy, < liminf (x, + y,) for any sequence (y,,),,
Dy, = 0Vn = liminf (x,yy) = liminf (x,)liminf (y,)
(O)liminfx, = +wo & lirP X, = +00
n—->+oco
(6) if (y,,),, is a convergent sequence, then :liminf (x,, + y,) = liminf (x,,) + lirp Vn
n—+oco
**|n page 5, replace lemma7 and lemma8, by the new single lemma7 :

Lemma7 : we have :

.. card(Jn2k) — Jimi
0= llmlnf ((n(n)—n(2657))\/2k+n1n(2k+n)) - llmlnf(

0((m(n)-m(2657))W2k+n In(2k+n)) 1
(m(n)-m(2657))VZk+nIn(2k+n) ) —2n

Proof : (of lemma7)

*The equality is obtained by combination of the assertion (6) of proposition5, lemma4 and lemmasé.

*The first inequality is obtained by application of the assertion (2) of proposition5.

*The second inequality is obtained by application of the assertion (2) of proposition 5 and the last relation of
lemma4.

*Replace lemma9, by the new lemmas :

Lemma8 :vk € N*, we have : lim card(Jpax) = +
n-+oo

Proof :(of lemma8)
*By the assertions (3) and (4) of proposition5 and lemma4 and the first inequality of lemma7, we have
successively : Vk € N*

liminf(card(]n'Zk)):liminf(fol ZquP’n,qzzsw lll(t-I-Zdﬁ + O(T[(n) - 7T(2657))VTL + 2k ln(n + Zk)) >

iminf (fy Saebnguss imamaire) + iminf (0 ((w(n) = m(265D)Va + ZkIn(n + 26)) >

http: // www.gjaets.com/ © Global Journal of Advance Engineering Technology and Sciences
(43]


http://www.gjaets.com/

: THOMSON REUTERS

[Ghanim et al., 5(8): August, 2018] ISSN 2349-0292
Impact Factor 3.802
o 1 dt . o((r(m)-m(2657)Vn¥2kIn(n+2k))
Liminf (fO qupn.qz%w m) + liminf (m(n)-m(2657) )Vn+2k In(n+2k) )llmlnf((n(n) B
n(2657) Wn + 2k In(n + 2k))

.. 1 dt
= liminf (fO z:qE]P’n.qZZGWln(t+2k+q—1))
*The result follows, then, by the assertion (5) of proposition5 and lemmab.
**The rest of the paper [6] remains intact.
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