GLOBAL JOURNAL OF ADVANCED ENGINEERING TECHNOLOGIES AND SCIENCES

A SHORT ELEMENTARY PROOF OF THE BEAL CONJECTURE WITH DEDUCTION OF THE FERMAT LAST THEOREM
 Mohammed Ghanim
 *Ecole Nationale de Commerce et de Gestion B.P 1255 Tanger Maroc

DOI: 10.5281/zenodo. 4568087
ABSTRACT
The present short paper, which is an amelioration of my previous article "confirmation of the Beal-Brun-
Tijdeman-Zagier conjecture" published by the GJETS in 20/11/2019 [15], confirms the Beal's conjecture,
remained
open since $\quad 1914 \quad$ and \quad saying \quad that:

$$
" \exists a, b, c \in \mathbb{N}^{*} \text { such that : } a^{x}+b^{y}=c^{z} \text { and } \operatorname{gcd}(a, b, c)=1 \Rightarrow \min (x, y, z)=2 "
$$

The proof uses elementary tools of mathematics, such as the L'Hôpital rule, the Bolzano-Weierstrass theorem, the intermediate value theorem and the growth properties of certain elementary functions. The proof uses also the Catalan-Mihailescu theorem [18] [19] and some methods developed in my paper on the Fermat last theorem [14] published by the GJAETS in 10/12/2018. The particular case of the Fermat last theorem is deduced.

KEYWORDS: A Diophantine equation-The Fermat generalized equation-The Fermat/Catalan equation-The Beal conjecture-The Fermat last theorem -Primitive integers-The Intermediate value theorem-The L’Hôpital rule -The Bolzano/Weierstrass theorem -The Catalan/Mihailescu theorem 2010 Mathematics Subject Classification: 11 A xx (Elementary Number theory).

INTRODUCTION
 The Beal conjecture:

Definition1: We call « the Tijdeman and Zagier conjecture» or « the Beal conjecture» or what I call « the Beal-Brun-Tijdeman-Zagier conjecture» the following assertion: «the Diophantine equation $a^{x}+b^{y}=c^{z}$ (called «the Fermat generalized equation» or «the Fermat-Catalan equation») has no solution in \mathbb{N}^{*} for : $x>$ $2, y>2, z>2$ and $\operatorname{gcd}(a, b, c)=1$ (we say that: a, b, c are primitive) $), \operatorname{gcd}(a, b, c)$ denoting the greatest common divisor of the natural integers a, b and c.

Remark: 1) The case $x=y=z=n$ is the Fermat last theorem that a I have showed in $10 / 12 / 2018$ (see [14]) by an elementary short proof and also showed in a hard, relatively long, proof in 1994 (see [32]) by A .Wiles.
2) The condition $\operatorname{gcd}(a, b, c)=1$ is done there to avoid trivialities. Indeed, going from the Diophantine equation: $a^{x}+b^{y}=c^{z}$ multiplied by $a^{21 x} b^{14 y} c^{6 z}$, we obtain an infinite number of solutions of the Diophantine equation: $A^{2}+B^{3}=C^{7}$ as: $\left(a^{11 x} b^{7 y} c^{3 z}\right)^{2}+\left(a^{7 x} b^{5 y} c^{2 z}\right)^{3}=\left(a^{3 x} b^{2 y} c^{z}\right)^{7}$

Recall that the Diophantine equation $A^{2}+B^{3}=C^{7}$ was completely resolved, in [20], where Poonen-SchaeferStoll showed that the strictly positive entire primitive solutions are:

$$
(A, B, C)=(2213459,1414,65) \text { And }(A, B, C)=(15312283,9262,113)
$$

3) Recall that if $\zeta(3)=\sum_{k=1}^{+\infty} \frac{1}{k^{3}}$ denotes the Apéry's constant, the probability for three integers to be primitive is $\frac{1}{\zeta(3)}$
4) Poonen-Schaefer-Stoll remarked in [20] that: for any integers (a,b,c) with $|a| \leq K^{\frac{1}{x}},|b| \leq K^{\frac{1}{y}},|c| \leq K^{\frac{1}{z}}$ the probability to have: $a^{x}+b^{y}=c^{z}$ is $1 / K$.

History: *the conjecture was formulated independently by the banker and amateur mathematician Andrew Beal [24] in 1993 and the mathematicians Robert Tijdeman and Don Zagier in 1994. But it seems that it has appeared in the Brun works since 1914(see [8]). Andrew Beal [24] devoted, since 1997, an increasing price for any one can prove or disapprove his conjecture.
*In 300 before Jesus Christ, Euclid resolved completely, in ([12], book x), the Diophantine equation $a^{2}+b^{2}=$ c^{2} by giving its general solutions (See proposition 8 below).
*In the years 1600 Fermat showed that the Diophantine equation: $a^{2}+b^{4}=c^{4}$ has no solution.
*Then it was showed that the Diophantine equation: $a^{x}+b^{4}=c^{4}$ has no solution for any integer x.
*In 1994, Wiles [32] showed by a relatively long proof of 100 pages that the Diophantine equation: $a^{n}+b^{n}=c^{n}$ has no solution with not null integers a, b, c for $n>2$ by using powerful tools of number theory. This is the Fermat last theorem.
*In 2002, Preda Mihailescu [18], [19] showed that Diophantine equation: $1+b^{y}=c^{z}$ has the sole solution $(b, c, y, z)=(2,3,3,2)$ (Resolving, so, what is known as the «Catalan conjecture»). The proof uses cyclotomic Fields and Galois modules.
*In 2005 Bjorn Poonen, Edward F. Schaefer and Michael Stoll [20] showed that the Diophantine equations: $a^{x}+$ $b^{y}=c^{z}$ with $\{x, y, z\}=$ all permutations of $(2,3,7)$ have only 4 solutions with no power>2.
*In 2009, David Brown [4] studied the case: $(x, y, z)=(2,3,10)$
*In 2009, Michael Bennet, Jordan Ellenberg and Nathan Ng studied [1] the case: $(x, y, z)=(2,4, n)$ for $n \geq 4$.
*In 2014, Samir Siksek and Michael Stoll studied [22] the case $(x, y, z)=(2,3,15)$
*In 2018, M.Ghanim showed in [14] the Fermat last theorem, which is a special case of the Beal conjecture, by an elementary short proof.

For more History see [2] and [3].

The Fermat last theorem:

Definition2: We call « Fermat last theorem», the following statement: «It does not exist natural integers x, y and z such that: $0<x<y<z$ and $x^{n}+y^{n}=z^{n}$, for n a natural integer ≥ 3 ».

History: *This problem has appeared about the fourth century with the Greek mathematician Diophante (325410) in his work «Arithmetica» [11] (the problem II.VIII, page 85), but the problem $x^{2}+y^{2}=z^{2}$, has appeared and was resolved by Euclid, about 300 before J.C, in his famous "Elements" (The Book X) [12]
*About 1621, the French mathematician Pierre Simon de Fermat (1601-1665) writed in the margin of the page 85 of his copy of [11] nears the statement of the famous problem, the following: «J'ai trouvé une merveilleuse démonstration de cette proposition, mais la marge est trop étroite pour la contenir ». This can be translated as:"I have discovered a truly remarkable proof which this margin is too small to contain". But it seems that Fermat has never published his proof. In any case we don't know now this proof.
*In 1670 , the proof of the case $n=4$, by Fermat, was published by his son Samuel.
*On 4 August 1753, L. Euler wrote to Goldbach claiming to prove the Fermat last theorem for n=3, but his proof, published in his book "Algebra" (1770) is incomplete.
*In 1816, the Paris Sciences Academy devoted a gold medal and 3000 F for who can give a proof of the Fermat last theorem. This offer was retaken in 1850.
*In 1825, Dirichlet (1805-1859) and Legendre (1752-1833) proved the case $n=5$.
*Searching a solution to the Fermat last theorem, Marie-Sophie Germain (1776-1831) discovered his "Sophie Germain theorem" $[28]$ which says that at least one of the positive integers x, y, z such that $x^{p}+y^{p}=z^{p}$, for $p \geq$ 3 a prime integer, must be divisible by p^{2} if we can find an auxiliary prime q such that:

1) Two none zero consecutive classes modulo q cannot be simultaneously be p-powers
2) p itself cannot be a p-power modulo q
*In 1832, Dirichlet proved the case $\mathrm{n}=14$.
*In 1839, Lame proved the case $\mathrm{n}=7$
*In 1863, the proof of the case $\mathrm{n}=3$, by Gauss, was published.
*In 1908, The Gottingen University and the Wolfskehl Foundation devoted a price of 100.000 Marks for who can give a proof of the Fermat last theorem before 2008.
*In 1952, Harry Vandiver used a Swac Computer to show that the Fermat last theorem is true for $\mathrm{n} \leq 2000$
*Between 1964 and 1994, Jean-Pierre Sere, Yves Hellegouarch and Robert Langlands have given some development to the problem by working on the representation of the elliptic curves with the modular functions.

* This problem, then, remained open for more than 370 years, (Although many attempts of the more eminent mathematicians), when in 1994 the English mathematician Andrew Wiles [32] proved it-by a relatively long proof that has occupied about 100 pages- using powerful tools of number theory, such the Shimura-Taniyama-Weil conjecture, the modular forms, the Galoisian representations...

So the problem of finding a short elementary proof of the Fermat last theorem remained open up to 10/12/2018 when M.Ghanim published in the GJAETS (India) his paper entitled:"confirmation of the Fermat last theorem by an elementary short proof" (See [14]).
*For More and detailed History see in Wikipedia the articles on the Fermat last theorem specially [23] with their references and the Simon Singh good book "Le dernier théorème de Fermat" [21].

The note: The purpose of the present short note is to give a relatively elementary proof of the Beal conjecture based on the intermediate value theorem, the Bolzano-Weierstrass theorem, the L'Hôpital Rule, the CatalanMihailescu theorem, the growth properties of certain elementary functions and some methods of [14].

Results: Our main results are:
Theorem1: (proving the Beal's conjecture) let x, y and z three integers ≥ 2, then:

$$
\exists a, b, c \in \mathbb{N}^{*} \text { such that : } a^{x}+b^{y}=c^{z} \text { and } \operatorname{gcd}(a, b, c)=1 \Rightarrow \min (x, y, z)=2
$$

Theorem2: (proving the Fermat last theorem) let $n \geq 2$, then:

$$
\exists a, b, c \in \mathbb{N}^{*} \text { such that : } a^{n}+b^{n}=c^{n} \text { and } \operatorname{gcd}(a, b, c)=1 \Rightarrow n=2
$$

Methods: The methods used in the paper are as follows.
For theorem1: going from the integers $x, y, z \geq 2$ and $a, b, c \in \mathbb{N}^{*}$ such that $\operatorname{gcd}(a, b, c)=1$, and $a^{x}+b^{y}=$ $\overline{c^{z}}$, I show that $n=\min (x, y, z)=2$. First I show that I can suppose $1 \leq a^{x}<b^{y}<c^{z}$ and secondly that I can distinguish the following 2 cases:

First case: $a=1$.

In this case $n=\min (x, y, z)=2$ follows from the Catalan-Mihailescu theorem (Proposition 4).

Second case: $a \geq 2$

*Using the intermediate value theorem, I show that:
$\left.\forall k \geq 4 \exists \theta_{k} \in\right] 1-\frac{\pi}{4}, 1\left[\right.$ such that $\left(\frac{a^{x}}{c^{z}}\right)^{\theta_{k}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathbf{k}}+\frac{1}{\mathbf{k}}\right)}+\left(\frac{b^{y}}{c^{z}}\right)^{\theta_{k}}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{k}+\frac{1}{k}\right)}=1$
 b^{y} assured by $\operatorname{gcd}(a, b, c)=1$) and $a^{x}+b^{y}=c^{z}$, and I show that: for this $p \geq 4$: we have:

$$
2 \leq n=\min (x, y, z) \leq \frac{2 \tan \left(1-\theta_{p}\right)}{1-\theta_{p}} \leq \frac{8}{\pi}=2.546 \ldots \text { (because: } 0<1-\theta_{p} \leq \frac{\pi}{4} \text {) i.e. } n=2
$$

For Theorem 2: The method is a simple deduction from theorem1.
Organization of the paper: The note is organized as follows. The $\S 1$ is an introduction giving the necessary definitions and some History. The $\S 2$ gives the proof ingredients i.e. the results needed in the proofs of our main results. The $\S 3$ gives the proof of the Beal conjecture. The $\S 4$ gives the deduction of the Fermat conjecture. The $\S 5$ gives some references for further reading.

THE PROOF INGREDIENTS

We will need the following results for showing our main theorem. The other results not needed are cited for information.

Proposition1: $(\operatorname{gcd}) \operatorname{gcd}(a, b, c)$ is the strictly positive greatest common divisor of the integers a, b, c. If $\operatorname{gcd}(a, b, c)=1$ we say that " a, b, c are primitive or coprime" we have:
(i) $d=\operatorname{gcd}(a, b, c) \Rightarrow d>0$ and d divides the three integers a, b, c
(ii) d divides the three integers a, b, c and $d>0 \Rightarrow d \leq \operatorname{gcd}(a, b, c)$
(iii) d divides the three integers $a, b, c \Rightarrow d$ divides $\operatorname{gcd}(a, b, c)$
(iv) (Bezout theorem) $\operatorname{gcd}(a, b, c)=1 \Leftrightarrow \exists u ; v, w \in \mathbb{Z} u a+v b+w c=1$
(v) $\operatorname{gcd}(a, b, c)=d \Leftrightarrow \exists \alpha, \beta, \gamma \in \mathbb{N}$ Such that $\left\{\begin{array}{c}a=\alpha d, b=\beta d, c=\gamma d \\ \operatorname{gcd}(\alpha, \beta, \gamma)=1\end{array}\right.$
(vi) $* \operatorname{gcd}(a, b, c)=d \Rightarrow \exists \alpha, \beta, \gamma \in \mathbb{Z} u a+v b+w c=d$
*The reciprocal implication is not always true
$(\operatorname{vii}) \operatorname{gcd}(a, b, c)=1 \Leftrightarrow \forall n, m, p \in \mathbb{N}^{*} \operatorname{gcd}\left(a^{n}, b^{m}, c^{p}\right)=1$
$($ viii $) \operatorname{gcd}\left(a^{n}, b^{n}\right)=(\operatorname{gcd}(a, b))^{n}$
Proposition2: (The Gauss theorem) [25] if p is a prime integer, then p is a divisor of the integer $c^{z} \Rightarrow p$ is a divisor of the integer c. Recall that p is a prime integer if its set of divisors is $\{1, p\}$.

Proposition3: (Euclid (300 before J.C)) ([12], book X) the Diophantine equation: $a^{2}+b^{2}=c^{2}$, has the particular solution: $(a, b, c)=(3,4,5)$ and has for general solutions:

$$
\left\{\begin{array}{c}
a=2 x y z \\
b=x\left(z^{2}-y^{2}\right) \\
c=x\left(z^{2}+y^{2}\right)
\end{array}\right.
$$

With: $(x, y, z) \in\left\{(p, q, r) \in \mathbb{N}^{3}\right.$ such that $r>q$ and p, q, r are of different parity $\}$

Proposition4 :(Eugene Charles Catalan-Preda Mihailescu theorem) [18], [19] The Diophantine equation: $1+b^{y}=c^{z}$ (with: b, c, z, y integers >1) has the single solution: $b=2, c=3, y=3$ and $z=2$.

Proposition5: For: $(x, y, z)=$ all the permutations of $\{2,4,4\}$, the Diophantine equation: $a^{x}+b^{y}=c^{z}$ has no solution in \mathbb{N}^{*}.

Proof: (of proposition2)

*For example considering The Diophantine equation $a^{2}+b^{4}=c^{4}$ we have:

$$
a^{2}+\left(b^{2}\right)^{2}=\left(c^{2}\right)^{2}
$$

*So, by proposition3: $a=3, b^{2}=4$ and $c^{2}=5$ is a solution i.e. $a=3, b=2$ and $c=\sqrt{5}$
*But $\sqrt{5} \notin \mathbb{Q} \Rightarrow c \notin \mathbb{N}$
*This being impossible the result is showed.
Proposition6: (Euler-Gauss theorem [13], [16], [17]) The Diophantine $a^{3}+b^{3}=c^{3}$ has no solutions in \mathbb{N}^{*}.
Proposition7: (The Fermat last theorem) [14], [32], we have:

$$
\exists a, b, c \in \mathbb{N}^{*} \text { such that } a^{n}+b^{n}=c^{n} \text { And } \operatorname{gcd}(a, b, c)=1 \Rightarrow n=2
$$

Proposition8 : (Poonen-Schaefer-Stoll [20]) for $(x, y, z)=$ all the permutations of $\{2,3,6\}$ the sole case for which the Diophantine equation $a^{x}+b^{y}=c^{z}$ has non trivial solutions is $x=6, a=1, y=3, b=2, z=$ $2, c=3$

Proposition9: (Beukers theorem [3]) in the case $(x, y, z)=(2,2, z)$ with: $z \geq 2$ or $(x, y, z)=$ $(2,3,3),(2,3,4),(2,3,5))$, the set of solutions of the Diophantine equation $a^{x}+b^{y}=c^{z}$ is empty or infinite.

Proposition10: (Darmon-Granville theorem [10]) for any fixed choice of positive integers x, y, z satisfying the hyperbolic case: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<1$, only finitely many primitive triples (a, b, c) solving the Diophantine equation $a^{x}+$ $b^{y}=c^{z}$ exist.

Note that this result resolves partially the Fermat-Catalan conjecture which is stronger because allows the exponents x, y, z to vary.

Proposition11: For the Diophantine equation: $a^{x}+b^{y}=c^{z}$, we can suppose $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<1$ called the hyperbolic case.

Proof: (of proposition11)
Remark: We have: $\forall x, y, z \in \mathbb{N}^{*} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}<1 \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}<\frac{41}{42}$
Indeed for the two other cases, we have:
*Second case called the Euclidean case: $: \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$, a simple analysis shows that:

$$
(x, y, z)=(3,3,3) \text { or all the permutations of }\{2,4,4\} \text { or all the permutations of }\{2,3,6\}
$$

These cases are completely resolved respectively by proposition6, proposition5 and proposition8.
*Third case called the spherical case: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>1$, a simple analysis shows that:
$(x, y, z)=$ all the permutations of $\{2,2, m\}(m \geq 2)$
http: // www.gjaets.com/
© Global Journal of Advance Engineering Technology and Sciences
or all the permuations of $\{2,3,3\}$ or all the permutations of $\{2,3,4\}$
or all the permutations of $\{2,3,5\}$
These cases are completely resolved by the Beukers theorem (proposition9).
Proposition12: From the solutions, (a, b, c, x, y, z), of the Diophantine equation $a^{x}+b^{y}=c^{z}$ with $\operatorname{gcd}(a, b, c)=1 ; x, y, z \geq 2$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<1$, we know the following ten ones :

$$
\begin{aligned}
& * 1^{6}+2^{3}=3^{2}, 2^{5}+7^{2}=3^{4}(\text { N. Bruin, 2003[6] }), 13^{2}+7^{3}=2^{9}(\text { N. Bruin, } 2004[7]), 2^{7}+17^{3}= \\
& 71^{2}(\text { Poonen }- \text { Schaefer }- \text { Stoll, 2005[20] }), 3^{5}+11^{4}=122^{2}(\text { Bruin, } 2003[6])
\end{aligned}
$$

$$
* 17^{7}+76271^{3}=21063928^{2}, 1414^{3}+221359^{2}=65^{7}, 9262^{3}+15312283^{2}=113^{7}
$$

(The three discovered by Poonen-Schaefer-Stoll, 2005[20])
$43^{8}+96222^{3}=30042907^{2}($ Bruin, 2003[6] $), 33^{8}+1549034^{2}=15613^{3}($ Bruin, 1999[5] $)$
Remark: 1) for all the examples of the precedent proposition12, we have: $\min (x, y, z)=2$.
2) S.Siksek and M.Stoll [22] talk, following H.Darmon [9] and H.Darmon-A. Granville [10], about the generalized Fermat conjecture (concerning the hyperbolic case: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<1$) which says that the sole non trivial primitive solutions are those cited in the above proposition 12 .

Proposition13: the hypothesis $« \operatorname{gcd}(a, b, c)=1 »$ is a necessary condition in the Beal conjecture.
Proof: (of proposition13)
(i)For example:
$* 2^{n}+2^{n}=2^{n+1}$, for: $n \geq 0$. Note that: 2 divides $\operatorname{gcd}\left(2^{n}, 2^{n}, 2^{n+1}\right) \neq 1$.
$* 3^{3 n}+\left(2.3^{n}\right)^{3}=3^{3 n+2}$ for $n \geq 1$.
Note that: 3 is a common factor to $a=3, b=2.3^{n}$ and $c=3$ so $\operatorname{gcd}(a, b, c) \neq 1$.

* $\left(p^{n}-1\right)^{2 n}+\left(p^{n}-1\right)^{2 n+1}=\left(p .\left(p^{n}-1\right)^{2}\right)^{n}$ for $n \geq 3$ and $p \geq 2$. Note that $a^{n}-1$ is a common factor to $a=p^{n}-1, b=p^{n}-1$ and $c=p\left(p^{n}-1\right)^{2}$ so $\operatorname{gcd}(a, b, c) \neq 1$
* $\left(p\left(p^{n}+q^{n}\right)\right)^{n}+\left(q\left(p^{n}+q^{n}\right)\right)^{n}=\left(p^{n}+q^{n}\right)^{n+1}$ for $n \geq 3$ and $p, q \geq 1$.

Note that: $p^{n}+q^{n}$ is a common factor to $a=p\left(p^{n}+q^{n}\right), b=q\left(p^{n}+q^{n}\right)$ and $c=p^{n}+q^{n}$.
(ii) We can, in fact, construct from any solution $\left(a_{1}, b_{1}, c_{1}\right)$ such that $a_{1}^{x}+b_{1}^{y}=c_{1}^{z}$ an infinite number of solutions (a_{n}, b_{n}, c_{n}) such that:

1) $a_{n}^{x}+b_{n}^{y}=c_{n}^{z}$.
2) $a_{n}=a_{n-1}^{y z+1} \cdot b_{n-1}^{y z} \cdot c_{n-1}^{y z}, b_{n}=a_{n-1}^{x z} \cdot b_{n-1}^{x z+1} \cdot c_{n-1}^{x z}$ And $c_{n}=a_{n-1}^{x y} \cdot b_{n-1}^{x y} \cdot c_{n-1}^{x y+1}$
3) $\operatorname{gcd}\left(a_{n}, b_{n}, c_{n}\right) \neq 1$ because $a_{n-1} \cdot b_{n-1} \cdot c_{n-1}$ divides $\operatorname{gcd}\left(a_{n}, b_{n}, c_{n}\right)$

Proposition14: (The intermediate value theorem) [26] Let $\varphi:[a, b] \rightarrow \mathbb{R}$ (with: $a<b$) a continuous function, then $: \varphi(a) \varphi(b)<0 \Rightarrow \exists c \in] a, b[$ such that $\varphi(c)=0$

Proposition15: (circular functions) [31] we have:
（0） $\tan (0)=0$ and $\tan \left(\frac{\pi}{4}\right)=1$ with $\tan (t)=\frac{\sin (t)}{\cos (t)}$
（1）$\forall t \in\left[0, \frac{\pi}{2}\right] 1 \geq \cos (t) \geq 0$ And $1 \geq \sin (t) \geq 0$
（3）The function $t \rightarrow \sin (t)$ is increasing on $\left[0, \frac{\pi}{2}\right]$ with $(\sin (t))^{\prime}=\cos (t)$ ．
（4）The function $t \rightarrow \cos (t)$ is decreasing on $\left[0, \frac{\pi}{2}\right]$ with $(\cos (t))^{\prime}=-\sin (t)$ ．
（5）The function $t \rightarrow \tan (t)$ is derivable on ］0，$\frac{\pi}{2}\left[\right.$ with $(\tan (t))^{\prime}=\left(1+(\tan (t))^{2}\right)=\frac{1}{(\cos (t))^{2}}>0$ and has a reciprocal function denoted＂arctan＂：$\left[0,+\infty\left[\rightarrow\left[0, \frac{\pi}{2}[\right.\right.\right.$

Proposition16：（The l＇Hôpital rule）（See［30］）
（i）If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ or $\lim _{x \rightarrow a} f(x)= \pm \infty, \lim _{x \rightarrow a} g(x)= \pm \infty$（ a can be infinite）the limit $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is called to be an indeterminate form（IF）$\frac{0}{0}$ or $\frac{\infty}{\infty}$ respectively．
（ii）If f, g are differentiable on an interval $] a, b[$ except perhaps in a point $c \in] a, b[$ ， if $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ is the IF $\frac{0}{0}$ and if $\forall x \neq c, g^{\prime}(x) \neq 0$ ，then： $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ when the limits have a sense．
（iii）If f^{\prime}, g^{\prime} satisfies the same conditions as f and g the process is repeated．
（iv）The result remain true in the case where $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ is the $\mathrm{IF} \underset{\infty}{\infty}$ ．
Proposition17：（The Bolzano－Weierstrass theorem）［29］any bounded sequence $\left.\left(\theta_{k}\right)_{k} \subset\right] a, b$［ has a subsequence， denoted also $\left(\theta_{k}\right)_{k}$ ，converging to $\theta \in[a, b]$

PROOF OF THE BEAL CONJECTURE

THEOREM1：（Beal Conjecture）Let $x, y, z \in \mathbb{N}^{*} \geq 2,(a, b, c) \in \mathbb{N}_{*}^{3}$ ，then：

$$
\left\{\begin{array}{c}
\operatorname{gcd}(a, b,, c)=1 \\
a^{x}+b^{y}=c^{z} \\
\quad a b c \neq 0
\end{array} \Rightarrow n=\min (x, y, z)=2\right.
$$

Proof：（of the theorem1）
＊Let $x, y, z \in \mathbb{N}^{*} \geq 2,(a, b, c) \in \mathbb{N}_{*}^{3}$ such that：$a^{x}+b^{y}=c^{z}$ and $\operatorname{gcd}(a, b, c)=1$ ，
＊Prove that $\mathrm{n}=\min (x, y, z)=2$
Lemma1：$\left\{\begin{array}{c}\operatorname{gcd}(a, b,, c)=1 \\ a^{x}+b^{y}=c^{z} \\ a b c \neq 0\end{array} \Rightarrow\right.$ we can suppose $1 \leq a^{x}<b^{y}<c^{z}$
Proof ：（ of lemma 1）
$* a^{x}=c^{z}-b^{y}>0 \Rightarrow c^{z}>b^{y}$
＊the order＂\leq＂being total on \mathbb{N} ，we have：$a^{x} \leq b^{y}$ or $b^{y} \leq a^{x}$
＊So，we can suppose $a^{x} \leq b^{y}$
[Ghanim et al., 8(2): February, 2021]
*I say that: $\operatorname{gcd}(a, b, c)=1 \Rightarrow a^{x} \neq b^{y}$
*Indeed if: $a^{x}=b^{y}$, we have: $2 a^{x}=c^{z}$.
*So, 2 being prime, the Gauss theorem (see proposition 2) implies that $c=2^{w} l$ where l is not dividable by 2 .
*So: $2 a^{x}=2^{z w} l^{z}$ or $a^{x}=2^{z w-1} l^{z}$
*But: $w \geq 1, z \geq 2 \Rightarrow w z \geq 2 \Rightarrow w z-1 \geq 1 \Rightarrow 2$ divides a and b
*So: 2 divides $\operatorname{gcd}(a, b, c)=1$ (see the assertion (iii) of proposition 1)
*This being impossible the result follows.
Lemma2: if: $a=1$, we have: $n=\min (x, y, z)=2$
Proof: (of lemma2)
The result follows from the Mihailescu theorem (see proposition 4) assuring that the single solution of the Diophantine equation $1^{x}+b^{y}=c^{z}$ is $(b, y, c, z)=(2,3,3,2)$.

Lemma3: So we can suppose $a \geq 2$
Proof: (lemma3)
The result follows from lemma2, because we work with integers.
Lemma4: We have: (1) $\lim _{t \rightarrow 0} \frac{\mathrm{t}}{\tan (t)}=1$
(2) $\forall t \in\left[0, \frac{\pi}{2}\right] 0 \leq \frac{\mathrm{t}}{\tan (\mathrm{t})} \leq 1$
(3) $\forall t \in\left[0, \frac{\pi}{4}\right] \quad 1 \leq \frac{\tan (t)}{t} \leq \frac{4}{\pi}$

Proof: (of lemma4)
(1)*By the L'Hôpital rule, we have successively:
$\lim _{t \rightarrow 0} \frac{\tan (t)}{t}=F I \frac{0}{0}=\lim _{t \rightarrow 0} \frac{(\tan (t))^{\prime}}{t^{\prime}}=\lim _{t \rightarrow 0} \frac{1+(\tan (t))^{2}}{1}=\lim _{t \rightarrow 0}\left(1+(\tan (t))^{2}\right)=1$
(2)*For $f(t)=\tan (t)-t$, we have: $f^{\prime}(t)=1+(\tan (t))^{2}-1=(\tan (t))^{2} \geq 0 \forall t \in\left[0, \frac{\pi}{2}\right] \Rightarrow f$ is increasing on $\left[0, \frac{\pi}{2}\right] \Rightarrow \forall t \in\left[0, \frac{\pi}{2}\right] f(t)=\tan (t)-t \geq f(0)=0$
*The result follows.
(3)*For $g(t)=\frac{4}{\pi} t-\tan (t)$, we have: $g^{\prime}(t)=\frac{4}{\pi}-\left((\tan (t))^{2}+1\right)=\frac{4}{\pi}-1-(\tan (t))^{2}$

* $g^{\prime}(t)=0, t \in\left[0, \frac{\pi}{4}\right] \Leftrightarrow \mathrm{t}=\alpha=\arctan \left(\sqrt{\frac{4}{\pi}-1}\right)$
$* g$ is increasing on $\left[0, \arctan \left(\sqrt{\frac{4}{\pi}-1}\right)\right]$ and decreasing on $\left[\arctan \left(\sqrt{\frac{4}{\pi}-1}\right), \frac{\pi}{4}\right]$
*So, we have: $0 \leq t \leq \arctan \left(\sqrt{\frac{4}{\pi}-1}\right) \Rightarrow g(t)=\frac{4}{\pi} t-\tan (t) \geq g(0)=0$

RESEARCHERID

維部 THOMSON REUTERS

[Ghanim et al., 8(2): February, 2021]
And: $\arctan \left(\sqrt{\frac{4}{\pi}-1}\right) \leq \mathrm{t} \leq \frac{\pi}{4} \Rightarrow g(t)=\frac{4}{\pi} t-\tan (t) \geq g\left(\frac{\pi}{4}\right)=0$
*The result follows.
Lemma5: For $k \geq 4$, we have:
(i)The function $v(t)=t^{-\frac{\pi}{4}}(\ln (t))^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}$ is decreasing for $\mathrm{t}>e^{\frac{\pi}{4}+\frac{1}{k}}>1$
(ii) $a^{x}>e^{\frac{\pi}{4}+\frac{1}{k}}$
(iii) $\left(a^{x}\right)^{-\frac{\pi}{4}}\left(\ln \left(a^{x}\right)\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}>\left(b^{y}\right)^{-\frac{\pi}{4}}\left(\ln \left(b^{y}\right)\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}>\left(c^{z}\right)^{-\frac{\pi}{4}}\left(\ln \left(c^{z}\right)\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}$

Proof: (of lemma5)
(i)*We have:
$v^{\prime}(t)=t^{-\frac{\pi}{4}-1}(\ln (\mathrm{t}))^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{\mathrm{k}}\right)-1} \ln \left(\mathrm{t}^{-\frac{\pi}{4}} e^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}\right)$
*So: v deceasing $\Leftrightarrow \ln \left(\mathrm{t}^{-\frac{\pi}{4}} e^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}\right) \leq 0$
$\Leftrightarrow \mathrm{t}^{-\frac{\pi}{4}} e^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)} \leq 1 \Leftrightarrow \mathrm{t}^{\frac{\pi}{4}} \geq e^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)} \Leftrightarrow t \geq e^{\frac{\pi}{4}+\frac{1}{\mathrm{k}}}$
(ii)*Suppose contrarily that: $a^{x} \leq \mathrm{e}^{\frac{\pi}{4}+\frac{1}{\mathrm{k}}}$

* We have:

$$
k \geq 4 \Rightarrow 2^{2}=4 \leq a^{x} \leq \mathrm{e}^{\frac{\pi}{4}+\frac{1}{\mathrm{k}}} \leq e^{\frac{\pi}{4}+\frac{1}{4}}=2.816 \ldots
$$

*This being impossible the result follows.
(iii)The result follows by combination of lemma1 and the assertions (i), (ii) of lemma5.

Lemma6: (i) $\left.\forall k \geq 4 \exists \theta_{k} \in\right] 1-\frac{\pi}{4}, 1[$ such that:

$$
\left(\frac{a^{x}}{c^{z}}\right)^{\theta_{k}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathbf{k}}+\frac{1}{\mathrm{k}}\right)}+\left(\frac{b^{y}}{c^{z}}\right)^{\theta_{k}}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathbf{k}}+\frac{1}{\mathrm{k}}\right)}=1
$$

(ii) The sequence $\left(\theta_{k}\right)_{k}$ has a subsequence denoted also $\left(\theta_{k}\right)_{k}$, converging to $\theta \in\left[1-\frac{\pi}{4}, 1\right]$

Proof: (of lemma 6)
(i)*Consider on $\left[1-\frac{\pi}{4}, 1\right]$, for $k \geq 4$, the continuous function:

$$
\varphi_{k}(t)=\left(\frac{a^{x}}{c^{z}}\right)^{t}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\mathrm{t}+\frac{1}{\mathrm{k}}\right)}+\left(\frac{b^{y}}{c^{z}}\right)^{t}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{k}}+\frac{1}{\mathrm{k}}\right)}-1
$$

*We have:
$\left\{\begin{array}{c}4 \leq a^{x}<b^{y}<c^{z} \\ \frac{a^{x}}{c^{z}}+\frac{b^{y}}{c^{z}}=1 \\ \text { the assertion (iii) of lemma 5 }\end{array} \Rightarrow\right.$

RESEARCHERID

率冓 THOMSON REUTERS

[Ghanim et al., 8(2): February, 2021]
ISSN 2349-0292
Impact Factor 3.802
$\Rightarrow \varphi_{k}\left(1-\frac{\pi}{4}\right)=\left(\frac{a^{x}}{c^{z}}\right)^{1-\frac{\pi}{4}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{\mathrm{k}}\right)}+\left(\frac{b^{y}}{c^{z}}\right)^{1-\frac{\pi}{4}}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}-1$
$=\left(\frac{a^{x}}{c^{z}}\right)^{1-\frac{\pi}{4}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{\mathrm{k}}\right)}+\left(\frac{b^{y}}{c^{z}}\right)^{1-\frac{\pi}{4}}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}-\left(\frac{a^{x}}{c^{z}}+\frac{b^{y}}{c^{z}}\right)$
$=\frac{a^{x}}{c^{z}}\left(\left(\frac{a^{x}}{c^{z}}\right)^{-\frac{\pi}{4}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{\mathrm{k}}\right)}-1\right)+\frac{b^{y}}{c^{z}}\left(\left(\frac{b^{y}}{c^{z}}\right)^{-\frac{\pi}{4}}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{\mathrm{k}}\right)}-1\right)$
$=\frac{a^{x}}{c^{z}}\left(\frac{\left.\left(a^{x}\right)^{-\frac{\pi}{4}}\left(\ln \left(a^{x}\right)\right)^{\frac{\pi}{4}} \frac{\pi}{4}+\frac{1}{k}\right)-\left(c^{z}\right)^{-\frac{\pi}{4}}\left(\ln \left(c^{z}\right)\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}}{\left.\left(c^{z}\right)^{-\frac{\pi}{4}}\left(\ln \left(c^{z}\right)\right)^{\frac{\pi}{4}} \frac{\pi}{4}+\frac{1}{k}\right)}\right)+\frac{b^{y}}{c^{z}}\left(\frac{\left(b^{y}\right)^{-\frac{\pi}{4}}\left(\ln \left(b^{y}\right)\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}-\left(c^{z}\right)^{-\frac{\pi}{4}}\left(\ln \left(c^{z}\right)\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right)}}{\left.\left(c^{z}\right)^{-\frac{\pi}{4}}\left(\ln \left(c^{z}\right)\right)^{\frac{\pi}{4}\left(\frac{\pi}{4}+\frac{1}{k}\right.}\right)}\right)>0$

* We have:
$\left\{\begin{array}{c}\frac{a^{x}}{c^{z}}+\frac{b^{y}}{c^{z}}=1 \\ \ln (4) \leq \ln \left(a^{x}\right)<\ln \left(b^{y}\right)<\ln \left(c^{z}\right) \Rightarrow \\ \frac{1}{\mathrm{k}}>0\end{array}\right.$
$\varphi_{k}(1)=\frac{a^{x}}{c^{z}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}}\left(\frac{1}{\overline{\mathrm{k}}}\right)+\frac{b^{y}}{c^{z}}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(\frac{1}{\mathrm{k}}\right)}-1$
$=\frac{a^{x}}{c^{z}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}}\left(\frac{1}{\mathrm{k}}\right)+\frac{b^{y}}{c^{z}}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}}\left(\frac{1}{\mathrm{k}}\right)-\left(\frac{a^{x}}{c^{z}}+\frac{b^{y}}{c^{z}}\right)$
$=\frac{a^{x}}{c^{z}}\left(\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}}\left(\frac{1}{\mathrm{k}}\right)-1\right)+\frac{b^{y}}{c^{z}}\left(\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(\frac{1}{\mathrm{k}}\right)}-1\right)<0$
*So, by the intermediate value theorem: $\left.\varphi_{k}\left(1-\frac{\pi}{4}\right) \varphi_{k}(1)<0 \Rightarrow \forall k \geq \frac{4}{\pi} \exists \theta_{k} \in\right] 1-\frac{\pi}{4}, 1[$ Such that:

$$
\varphi_{k}\left(\theta_{k}\right)=\left(\frac{a^{x}}{c^{z}}\right)^{\theta_{k}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{k}}+\frac{1}{\mathrm{k}}\right)}+\left(\frac{b^{y}}{c^{z}}\right)^{\theta_{k}}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{k}+\frac{1}{k}\right)}-1=0
$$

(ii)The result follows by the Bolzano-Weierstrass theorem.

Lemma7: the condition " $a^{x} \neq b^{y}$ "(assured by the hypothesis " $\operatorname{gcd}(a, b, c)=1$ ") is necessary for having the assertion (i) of lemma6.

Proof: (of lemma7)
Lemma7 will be deduced from the claims below.
Claim1: We have: $a^{x}=b^{y} \Rightarrow a^{x}=2^{\frac{1}{\frac{1-\theta_{k}}{\frac{\pi}{4}\left(1-\theta_{k}+\frac{1}{k}\right)}}}$
Proof: (of claim1)
*Indeed: letting $a^{x}=b^{y}$ in the relation equation of the assertion (i) of lemma6, we have successively:
$\frac{a^{x}}{c^{z}}=\frac{1}{2} \Rightarrow 2\left(\frac{1}{2}\right)^{\theta_{k}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(2 a^{x}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{k}}+\frac{1}{\mathrm{k}}\right)}=2^{1-\theta_{k}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(2 a^{x}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{k}}+\frac{1}{\mathrm{k}}\right)}=1$
$\Rightarrow \frac{\ln (2)+\ln \left(a^{x}\right)}{\ln \left(a^{x}\right)}=2^{\frac{1-\theta_{k}}{\frac{\pi}{4}\left(1-\theta_{k}+\frac{1}{k}\right)}} \Rightarrow\left(2^{\frac{1-\theta_{k}}{\frac{\pi}{4}\left(1-\theta_{k}+\frac{1}{k}\right)}}-1\right) \ln \left(a^{x}\right)=\ln (2) \Rightarrow a^{x}=2^{\frac{1}{2^{\frac{1-\theta}{4}\left(1-\theta_{k}+\frac{1}{k}\right)}}}$

RESEARCHERID

維袁 THOMSON REUTERS

[Ghanim et al., 8(2): February, 2021]
Claim2: $\quad 2^{\frac{1}{\frac{1-\theta_{k}}{\frac{\pi}{4}\left(1-\theta_{k}+\frac{1}{k}\right)}}-1} \leq 2^{\frac{1}{\frac{1-\theta_{k}}{\frac{\pi}{4} \tan \left(1-\theta_{k}+\frac{1}{k}\right)}}-1}$
Proof: (of claim2)
*By the assertion (2) of lemma4, we have:
$k \geq 4 \geq 1.75 \ldots=\frac{1}{\frac{\pi}{2}-1} \Rightarrow 1-\frac{\pi}{2}+\frac{1}{k}<0<\theta_{k} \Rightarrow 1-\theta_{k}+\frac{1}{k}<\frac{\pi}{2}$
$\Rightarrow 1-\theta_{k}+\frac{1}{k} \leq \tan \left(1-\theta_{k}+\frac{1}{k}\right) \Rightarrow \frac{1-\theta_{k}}{\tan \left(1-\theta_{k}+\frac{1}{k}\right)} \leq \frac{1-\theta_{k}}{1-\theta_{k}+\frac{1}{k}}$
$\Rightarrow 2^{\frac{\frac{4}{\pi}\left(1-\theta_{k}\right)}{\tan \left(1-\theta_{k}+\frac{1}{k}\right)}}-1 \leq 2^{\frac{\frac{4}{\pi}\left(1-\theta_{k}\right)}{1-\theta_{k}+\frac{1}{k}}}-1 \Rightarrow \frac{1}{2^{\frac{4}{\pi}\left(1-\theta_{k}\right)}} \leq \frac{1}{\frac{\frac{4}{\pi}\left(1-\theta_{k}\right)}{2^{\tan \left(1-\theta_{k}+\frac{1}{k}-1\right.}-1}}$
$\Rightarrow 2^{\frac{1}{\frac{1-\theta_{k}}{\frac{\pi}{4}\left(1-\theta_{k}+\frac{1}{k}\right)}}-1} \leq 2^{\frac{1}{\frac{1-\theta_{k}}{\frac{\pi}{4} \tan \left(1-\theta_{k}+\frac{1}{k}\right)}-1}}$
Conclusion: (The wanted contradiction)
*First case: if $\lim _{k \rightarrow+\infty} \theta_{k}=\theta \neq 1$
**By claim1, tending $k \rightarrow+\infty$, we have:

$$
4 \leq a^{x}=\lim _{k \rightarrow+\infty} \frac{1}{\frac{1-\theta_{k}}{2^{\frac{\pi}{4}\left(1-\theta_{k}+\frac{1}{k}\right)}}-1}=2^{\frac{1}{2^{\frac{1-\theta}{\frac{\pi}{4}(1-\theta)}}}-1}=2^{\frac{1}{2^{\frac{4}{\pi}-1}}}=1.63 \ldots
$$

**This being impossible, the first case cannot occur.
*Second case: if $\lim _{k \rightarrow+\infty} \theta_{k}=\theta=1$
**By the assertion (1) of lemma4, claim1 and claim2, we have:

**This being impossible, the second case cannot, also, occur.
*Because the two possible cases cannot both occur: lemma 7 follows.
Lemma8: if $n=\min (x, y, z)$ and if θ_{k} (for $k \geq 4$) is that given by lemma 6 , we have:
(i) The function $w(t)=t^{-\frac{2}{\mathrm{n}} \tan \left(1-\theta_{k}\right)}(\ln (t))^{\frac{\pi}{4}\left(1-\theta_{\mathbf{k}}+\frac{1}{\mathbf{k}}\right)}$ is decreasing for $t \geq \mathrm{e}^{\frac{\pi n}{8}\left(\frac{1-\theta_{\mathrm{k}}+\frac{1}{\mathrm{k}}}{\tan \left(1-\theta_{\mathrm{k}}\right)}\right)}>1$
(ii) $\exists p \geq 4$ such that $a^{x} \geq \mathrm{e}^{\frac{\pi \mathrm{n}}{8}\left(\frac{1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}}{\tan \left(1-\theta_{\mathrm{p}}\right)}\right)}$
(iii)For $p \geq 4$ given by the assertion (ii)of lemma8, we have:
$\left(a^{x}\right)^{-\frac{2}{n} \tan \left(1-\theta_{\mathrm{p}}\right)}\left(\ln \left(a^{x}\right)\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}>\left(b^{y}\right)^{-\frac{2}{n} \tan \left(1-\theta_{\mathrm{p}}\right)}\left(\ln \left(b^{y}\right)\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}$
$>\left(c^{z}\right)^{-\frac{2}{n} \tan \left(1-\theta_{\mathrm{p}}\right)}\left(\ln \left(c^{z}\right)\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}$
Proof: (of lemma8)
(i)*For $t>1$, We have:
$w^{\prime}(t)=t^{-\frac{2}{n} \tan \left(1-\theta_{k}\right)-1}(\ln (\mathrm{t}))^{\frac{\pi}{4}\left(1-\theta_{k}+\frac{1}{k}\right)-1} \ln \left(\mathrm{t}^{-\frac{2}{n} \tan \left(1-\theta_{k}\right)} \mathrm{e}^{\frac{\pi}{4}\left(1-\theta_{\mathrm{K}}+\frac{1}{k}\right)}\right)$
*So, $\quad w \quad$ decreasing $\Leftrightarrow \quad \ln \left(\mathrm{t}^{-\frac{2}{n} \tan \left(1-\theta_{k}\right)} \mathrm{e}^{\frac{\pi}{4}\left(1-\theta_{\mathrm{k}}+\frac{1}{\mathrm{k}}\right)}\right) \leq 0 \Leftrightarrow \mathrm{t}^{-\frac{2}{n} \tan \left(1-\theta_{k}\right)} \mathrm{e}^{\frac{\pi}{4}\left(1-\theta_{\mathrm{K}}+\frac{1}{\mathrm{k}}\right)} \leq 1 \Leftrightarrow \mathrm{t}^{\frac{2}{n} \tan \left(1-\theta_{k}\right)} \geq$ $\mathrm{e}^{\frac{\pi}{4}\left(1-\theta_{\mathrm{k}}+\frac{1}{\mathrm{k}}\right)} \Leftrightarrow t \geq \mathrm{e}^{\frac{\pi \mathrm{n}}{8}\left(\frac{1-\theta_{\mathrm{k}}+\frac{1}{\mathrm{k}}}{\tan \left(1-\theta_{\mathrm{k}}\right)}\right)}$
(ii) *Suppose contrarily that: $\forall k \geq 4 a^{x}<\mathrm{e}^{\frac{\pi n}{8}\left(\frac{1-\theta_{K}+\frac{1}{k}}{\tan \left(1-\theta_{k}\right)}\right)}$
*Tending $k \rightarrow+\infty$, we have, by the assertion (ii) of lemma4 and the assertion (ii) of lemma6: $\theta \in\left[1-\frac{\pi}{4}, 1\right] \Rightarrow$ $0<\frac{1-\theta}{\tan (1-\theta)} \leq 1 \Rightarrow a^{x} \leq \lim _{k \rightarrow+\infty} \mathrm{e}^{\frac{\pi n}{8}\left(\frac{1-\theta_{k}+\frac{1}{k}}{\tan \left(1-\theta_{k}\right)}\right)}=\mathrm{e}^{\lim _{x \rightarrow+\infty} \frac{\pi n}{8}\left(\frac{1-\theta_{\mathrm{k}}+\frac{1}{k}}{\tan \left(1-\theta_{k}\right)}\right)}=\mathrm{e}^{\frac{\pi \mathrm{n}}{8}\left(\frac{1-\theta}{\tan (1-\theta)}\right)} \leq \mathrm{e}^{\frac{\pi}{8}}$
*We have: $\frac{n}{x}=\frac{\min (x, y, z)}{x} \leq 1 \Rightarrow 2 \leq a \leq e^{\frac{\pi n}{8 x}} \leq e^{\frac{\pi}{8}}=1.48 \ldots$
*This being impossible the result follows.
(iii) The result is obtained by combination of lemma1 and the assertions (i) and (ii) of lemma 8.

Lemma9: If p, θ_{p} are the numbers given respectively by the assertion (iii) of lemma8 and the assertion (i) of lemma6, we have: $\theta_{p} \geq 1-\frac{2}{n} \tan \left(1-\theta_{p}\right)$, that is: $n \leq \frac{2 \tan \left(1-\theta_{p}\right)}{1-\theta_{p}}$

Proof: (of lemma 9)
*Remark: we have:

$$
\left\{\begin{array}{c}
\left.\theta_{p} \in\right] 1-\frac{\pi}{4}, 1[\\
p \geq 4 \\
n \geq 2
\end{array} \Rightarrow 0<\frac{2}{n} \tan \left(1-\theta_{p}\right)<\tan \left(\frac{\pi}{4}\right)=1\right.
$$

* If not: $\quad \theta_{p}<1-\frac{2}{n} \tan \left(1-\theta_{p}\right)$
* So, by the assertion (iii) of lemma7, we have:
$0=\left(\frac{a^{x}}{c^{z}}\right)^{\theta_{p}}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}+\left(\frac{b^{y}}{c^{z}}\right)^{\theta_{p}}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)^{\frac{\pi}{4}}}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}-1$
$>\left(\frac{a^{x}}{c^{z}}\right)^{1-\frac{2}{n}} \tan \left(1-\theta_{\mathrm{p}}\right)\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right) \mathrm{b}+\left(\frac{b^{y}}{c^{z}}\right)^{1-\frac{2}{\mathrm{n}} \tan \left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}-1$
$=\left(\frac{a^{x}}{c^{z}}\right)^{1-\frac{2}{n} \tan \left(1-\theta_{\mathrm{p}}\right)}\left(\frac{\ln \left(a^{x}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}+\left(\frac{b^{y}}{c^{z}}\right)^{1-\frac{2}{n} \tan \left(1-\theta_{\mathrm{p}}\right)}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)}\right)^{\frac{\pi}{4}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}-\left(\frac{a^{x}}{c^{z}}+\frac{b^{y}}{c^{z}}\right)$
$=\frac{a^{x}}{c^{z}}\left(\left(\frac{a^{x}}{c^{z}}\right)^{-\frac{2}{n} \tan \left(1-\theta_{\mathrm{p}}\right)}\left(\frac{\ln \left(\alpha^{x}\right)}{\ln \left(c^{z}\right)^{\frac{\pi}{4}}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}-1\right)+\frac{b^{y}}{c^{z}}\left(\left(\frac{b^{y}}{c^{z}}\right)^{-\frac{2}{\mathrm{n}} \tan \left(1-\theta_{p}\right)}\left(\frac{\ln \left(b^{y}\right)}{\ln \left(c^{z}\right)^{\frac{\pi}{4}}\left(1-\theta_{\mathrm{p}}+\frac{1}{\mathrm{p}}\right)}-1\right)\right.\right.$
>0.
*The obtained relation " $0<0$ " being impossible, we have well: $\theta_{p} \geq 1-\frac{2}{n} \tan \left(1-\theta_{p}\right)$ (That is: $\left.n \leq \frac{2 \tan \left(1-\theta_{p}\right)}{1-\theta_{p}}\right)$

RETURN TO THE PROOF OF THEOREM1:

*By lemma 9 and the assertion (3) of lemma4, we have:

$$
0<1-\theta_{p}<\frac{\pi}{4} \Rightarrow 2 \leq n \leq \frac{2 \tan \left(1-\theta_{p}\right)}{1-\theta_{p}} \leq 2\left(\frac{4}{\pi}\right)=\frac{8}{\pi}=2.546 . . \Rightarrow n=2
$$

*This ends the proof of the Beal conjecture.

DEDUCTION OF THE FERMAT LAST THEOREM

Theorem2: (the Fermat last theorem) let n an integer \geq 2, then:

$$
\exists a, b, c \in \mathbb{N}^{*} \text { such that : } a^{n}+b^{n}=c^{n} \text { and } \operatorname{gcd}(a, b, c)=1 \Rightarrow n=2
$$

Proof: (of theorem2)

The result follows because the Fermat last theorem is the particular case: $x=y=z=n$ of the Beal conjecture.

REFERENCES

[1]Bennet, Michael, A. -Ellenberg, Jordan, S.-Nathan C. NG (2009): the Diophantine equation $A^{4}+2^{\delta} B^{2}=C^{n}$. Available at: http://arxiv.org/abs/math/
(Accessed on: October 5, 2020)
[2]Beukers Frits: The generalized Fermat equation.
Available at: http://www.staff.science.uu.nl/~beuke106/Fermatlectures.pdf
(Accessed on: October 5, 2020)
[3]Beukers Frits (1998): The Diophantine equation $A x^{p}+B y^{q}=C z^{r}$. Duke. Math J. 91, pp 61-88.
[4]Brown, D. (2012): Primitive integral solutions to $x^{2}+y^{3}=z^{10}$. Int.Math. Res. Not. IMRN 2, pp 423-436
[5] Bruin, Nils (1999): The Diophantine equations $x^{2} \mp y^{4}=\mp z^{6}$ and $x^{2}+y^{8}=z^{3}$. Compositio. Math 18, pp 305-321.
[6] Bruin, Nils (2003): Chabauty methods using elliptic curves. J. Reine .Angew .Math. 562, pp 27-49.
[7] Bruin, Nils (2004): Visualizing sha (2) in Abelian surfaces. Math. Comp. 73, pp 1459-1476
[8] Brun, V. (2014): uber hypothesenbildung. Arc. Math. Naturv. Idenskab. 34, 2014, pp 1-14
[9]Darmon, H. (1997): Fallings plus epsilon, Wiles plus epsilon, and the generalized Fermat equation. C.R. Math. Rep. Acad. Sci. Canada 19 (1), pp 3-14
[10]Darmon, H. - Granville, A.: On the equations $z^{m}=F(x, y)$ and $A x^{p}+B y^{q}=C z^{r}$. Bull. London Math. Soc 27, 1995, pp 513-543.
[11] Diophante d'Alexandrie (1621): Diophanti Alexandrini rarum arithmeticarum libri. This is the Latin translation of the Diophante Grec work by Claude Gaspard Bachet De Méziriac.

Available at: https://gallica.bnf.fr/ak:/12148/bpt6k648679/
[Ghanim et al., 8(2): February, 2021]
(Accessed on October 5, 2020)
[12] Euclid (1966): Les éléments T1 (livres I- VII), T2 (livres VIII-X), T3 (XI-XIII), in les œuvres d'Euclide. This is the French translation of the Euclid Grec work by F. Peyard Blanchard. Paris. Available at: https://archive.org/details/lesuvresd'euclid03eucl/
(Accessed on October 5, 2020)
[13] Euler, L. (1770): Vostandige Anlectung Zur Algebra.
Available at: https://rotichitropark.firebaseapp.com/1421204266.pdf/
(Accessed on October 5, 2020)
[14]Ghanim, M. (2018): Confirmation of the Fermat Last Theorem by an elementary short proof. Global Journal of Advanced Engineering Technologies and Sciences (GJAETS), the December issue, 5(12), pp 1-8. India.

Available at: http://www.gjaets.com/
(Accessed on October 5, 2020)
[15] Ghanim, M. (2019): Confirmation of the Beal-Brun-Tijdeman-Zagier conjecture. Global Journal of Advanced Engineering Technologies and Sciences (GJAETS), the November issue, 6(11), pp 1-11. India.

Available at: http://www.gjaets.com/
(Accessed on October 5, 2020)
[16]Gauss, C.F: Neue theorie de zeregung der cuben; In C. F Gauss werke, Vol II, pp 383-390
Available at:
http://archive.wikiwix.com/cache/index2.php?url=http\%3A\%2F\%2Fresolver.sub.unigoettingen.de\%2Fpurl\%3FPPN235957348
(Accessed on: October 5, 2020)
[17]Mehl, serge: grand theorem de Fermat, $n=3$.
Available at: https://serge.mehl.free.fr/anx/th_fermat_gd3.html/
(Accessed on: October 5, 2020)
[18]Mihailescu, P. (2004): Primary cyclotomic units and a proof of Catalan's conjecture. J.Reine Angew .Math 572, pp167-195
[19]Mihailescu, P. (2005): Reflection, Bernoulli numbers and the proof of Catalan's conjecture. European congress of Mathematics. Eur.Math. Soc. Zurich, pp 325-340
[20] Poonen, Bjorn- Schaefer, Edward F.-Stoll, Michael (2005): Twits of X (7) and primitive solutions of $x^{2}+$ $y^{3}=z^{7}$.

Available at: http://arxiv.org/abs/math/0508174v1.
(Accessed on October 5, 2020)
See also: Duke Math. 137:1 (2007) pp 103-158
[21]Singh, Simon (2011): Le dernier théorème de Fermat (En 312 pages). Collection Pluriel. Editions Pluriel, Paris.

赫䋨 THOMSON REUTERS
[Ghanim et al., 8(2): February, 2021]
ISSN 2349-0292
Impact Factor 3.802
Available at: https://www.Fayard.fr/pluriel/le-dernier-theoreme-de-fermat-9782818502037
(Accessed on October 5, 2020)
[22]Siksek, Samir- Stoll, Michael (2014): The generalized Fermat equation $x^{2}+y^{3}=z^{15}$ preprint, pp 1-9.
Available at: https://arxiv.org/abs/math/
(Accessed on January 8, 2021)
[23]Wikipedia (2021): The Fermat last theorem.
Available at: http://en.wikipedia.org/wiki/Fermat last_theorem/
(Accessed on January 8, 2021)
[24]Wikipedia (2021): Beal's conjecture.
Available at: http://en.wikipedia.org/wiki/Beal's conjecture/.
(Accessed on January 8, 2021)
[25]Wikipedia (2021): Euclid lemma.
Available at: https://en.wikipedia.org/wiki/Euclid lemma/
(Accessed on January 8, 2021)
[26]Wikipedia (2021): The intermediate value theorem.
Available at: https://en.wikipedia.org/wiki/Intermediate value theorem/
(Accessed on January 1, 2021)
[27]Wikipedia (2021): The Bezout theorem.
Available at: https://en.wikipedia.org/wiki/Bezout theorem/
(Accessed on January 1, 2021)
[28]Wikipedia (2021): théorème de Sophie-Germain.
Available at: https://fr.wikipedia.org/wiki/Theoreme_de_Sophie_Germain/
(Accessed on January 8, 2021)
[29]Wikipedia (2021): théorème de Bolzano-Weierstrass.
Available at: https://fr.wikipedia.org/wiki/Theoreme de Bolzano-Weierstrass/
(Accessed on January 8, 2021)
[30] Wikipedia (2021): The L’Hôpital Rule.
Available at: https://fr.wikipedia.org/wiki/L’Hopital-Rule/
(Accessed on January 8, 2021)
[31] Wikipedia (2021): The circular functions.

RESEARCHERID

THOMSON REUTERS
[Ghanim et al., 8(2): February, 2021]
ISSN 2349-0292
Impact Factor 3.802
Available at: https://fr.wikipedia.org/wiki/circular-functions/
(Accessed on January 8, 2021)
[32] Wiles, Andrew (1995): Modular elliptic curves and Fermat's last theorem. Annals of mathematics 142,, pp 443-551.

Available at: http://math.stanford.edu/~lekheng/flt/wiles.pdf
(Accessed on January 5, 2021)

