GLOBAL JOURNAL OF ADVANCED ENGINEERING TECHNOLOGIES AND SCIENCES

“ASSESSMENT OF GROUND WATER SAMPLES FOR PHYSICO-CHEMICAL PARAMETERS FROM VARIOUS AREAS OF REWARI (HARYANA)”

Kapil Singh*, Dr Sunita Singh Shekhawat, Dr Alka Choudhary, M. S. Zubairu, Dr Renu Sharma

*Department of Chemistry, NIET, Nims University Rajasthan, Jaipur, India

DOI: 10.5281/zenodo.1207838

ABSTRACT
Due to human and industrial activities, ground water is contaminated. The present paper deals with the assessment of ground water samples for Physico-chemical parameters from various areas of district Rewari (Haryana). The following 15 parameters have been considered viz. Total Hardness, pH, Electrical Conductivity, Total Dissolved Solids, Alkalinity, Fluoride, Chloride, Sulphate, Nitrate, Phosphate, Lead, Zinc, Iron, Cadmium and Dissolved Oxygen by various analytical techniques. On comparing the results against drinking quality standards laid by [IS-10500:1991 BIS]. It was found that some of the water quality parameters were above the permissible limit and some were not. Alkalinity and Total Dissolved Solids levels are found extremely higher than permissible limits. High level of TDS and alkalinity causes objectionable taste and laxative effect. The most of the samples does not contain the concentration of Lead.

KEYWORDS: Physico-chemical, concentration, analytical technique, Total Hardness, Alkalinity.

INTRODUCTION
The water is one of the most important part of the ecosystem. Living things exist because of this is the only planet that has the existence of water. It is essential for the survival of all the living things be it plant or animal life. Water is the most abundant commodities in nature but also the most misused one. Although earth is a blue planet and 80% of earth’s surface is covered by water, the hard fact of life is that about 97% is locked in oceans and sea which is too saline to drink and direct use for agricultural or industrial purposes. 2.4% is trapped in polar icecaps and glaciers, from which icebergs break off and slowly melt at sea and oceans. Also due to increased human population, use of fertilizers in the agriculture and manmade activities, the natural aquatic resources causes heavy and varied pollution in aquatic environment leading to depletion of aquatic biota [1].

Water of good drinking quality is of basic importance to human physiological cycle and man’s continued existence depends very much on its availability [2]. The WHO report that approximation 36% of urban and 65% of rural Indians were without access to safe drinking water [3]. Ground water is the most important source of supply for drinking, irrigation and industrial purposes. Increasing population and its necessities have led to the deterioration of surface and sub-surface water [4]. Monitoring of water quality levels is thus important to assess the levels of pollution and also to assess the potential risk to the environment [5]. Fresh water has become a scarce commodity due to over exploitation and pollution of water. Increasing population and its necessities have led to the deterioration of surface and sub-surface water [4]. Monitoring of water quality levels is thus important to assess the levels of pollution and also to assess the potential risk to the environment [5].

MATERIALS AND METHODOLOGY

Collection of water samples
The water samples were collected in washed plastic bottles. These bottles were covered immediately after collection of the samples. The various ground water samples from Industrial, Roadside, Commercial and Remote Residential areas of Rewari have been collected from IMT Bawal (WSI-1), Harley Davidson Motor

http://www.gjaets.com/ © Global Journal of Advance Engineering Technology and Sciences
Company (WSI-2), Carrier Media India PVT (WSI-3), Rewari Bus Stand (WSC-1), District Court Rewari (WSC-2), Model Town Rewari (WSC-3), Kasola Thana (WSRS-1), Santech Highway Market (WSRS-2), Delhi-Jaipur Highway near Bawal (WSRS-3), Saharanwas (WSR-1), Balawas (WSR-2) and Bathera village (WSR-3) areas of Rewari, Haryana. At least three samples from different sources of ground water were collected from each site to get exact result. Table 1 shows different analytical water quality parameters with their analytical techniques.

Table 1: Different analytical water quality parameters with their analytical techniques.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Technique used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nitrate</td>
<td>Chromotropic acid method</td>
</tr>
<tr>
<td>2</td>
<td>Sulphate</td>
<td>Turbidimetric Method</td>
</tr>
<tr>
<td>3</td>
<td>Alkalinity</td>
<td>Titration method</td>
</tr>
<tr>
<td>4</td>
<td>pH</td>
<td>pH metry</td>
</tr>
<tr>
<td>5</td>
<td>Total Dissolved Oxygen</td>
<td>Filtration Method</td>
</tr>
<tr>
<td>6</td>
<td>Cadmium</td>
<td>Atomic Absorption Spectrometry</td>
</tr>
<tr>
<td>7</td>
<td>Iron</td>
<td>Atomic Absorption Spectrometry</td>
</tr>
<tr>
<td>8</td>
<td>Zinc</td>
<td>Atomic Absorption Spectrometry</td>
</tr>
<tr>
<td>9</td>
<td>Lead</td>
<td>Atomic Absorption Spectrometry</td>
</tr>
<tr>
<td>10</td>
<td>Total Hardness</td>
<td>Complexometric Titration using EDTA method</td>
</tr>
<tr>
<td>11</td>
<td>Dissolved Oxygen</td>
<td>Wrinkler's method</td>
</tr>
<tr>
<td>12</td>
<td>Electrical Conductivity</td>
<td>Conductivity Metry</td>
</tr>
<tr>
<td>13</td>
<td>Fluoride</td>
<td>Spectrometric method</td>
</tr>
<tr>
<td>14</td>
<td>Chloride</td>
<td>Argentometric method</td>
</tr>
<tr>
<td>15</td>
<td>Phosphate</td>
<td>UV/Visible Spectrophotometry</td>
</tr>
</tbody>
</table>
Determination of Nitrate
Nitrate was determined by Chromotropic acid method. Into a series of 100 ml of standard flask add nitrate working solution, up to 1ml in each flask. Added 1ml of Brucine sulfanilic acid and 10 ml of dilute H₂SO₄, and kept in dark for 10 minutes. This was followed by addition of 30 ml distilled and kept again in dark for 30 minutes. Then added distilled water to mark of standard flask and analysed at 410nm.

Determination of Alkalinity
10 ml of sample was taken into a conical flask. 1drop of sodium thiosulfate and two drops of phenolphthalein indicator were added. The solution was titrated against N/10 sulphuric acid till the colour just disappeared. Then addition of two drops of methyl orange was done. Again titrated against sulphuric acid until the colour turns orange yellow, noted the readings.

Determination of pH
pH was determined by electrometric method i.e., digital pH meter [Labtronics 11, serial No. 201103048] using standard buffer solutions. The samples were analysed, established equilibrium between electrode and sample stirring homogeneity and measured pH level.

Determination of TDS
The Total Dissolved Solids was determined by filtration method. 10 mL liquid is carefully transferred to a weighed platinum dish with the help of policeman and wash with distilled water. Evaporate the solution to dryness on steam bath and dry the dish in an oven at about 100 -118°C for about an hour. Cool it in desiccator and weigh.

Determination of Phosphate, Fluoride and Sulphate
The concentration of Phosphate, Fluoride ions and Sulphate of the samples were determined by using UV-Visible spectrophotometer (Model 2202, Systronics) using standard solutions and analysed at 420 nm, 325 nm, and 371 nm respectively.
Determination of Lead (Pb), Cadmium (Cd), Zinc (Zn) and Iron (Fe)
The samples were digested using 2% HNO₃ and then analysed by Atomic Absorption Spectrometer for Lead, Cadmium, Zinc and Iron on air-acetylene flame at wavelength 283.2 nm, 228.8 nm, 213.86 nm and 324.75 nm, respectively.

Total Hardness
Hardness is the property of water which prevents the lather formation with soap and increases the boiling points of water. The total Hardness was analysed by Complexometric titration using EDTA and Eriochrome black T indicator until the change from wine red to blue.

\[
\text{Hardness (mg/L)} = \frac{A \times B \times 1000}{\text{ml of Sample taken}}
\]

Where \(A \) = ml of EDTA for titration,
\(B \) = mg of CaCO₃ equivalent to 1 ml of EDTA.

Dissolved Oxygen (DO)
Determination of Dissolved Oxygen (DO) is very important need for living organisms to maintain their biological process. Determination of Dissolved Oxygen will be done using Sodium Thiosulphate solution and Manganese Sulphate solution.

Electrical Conductivity
The instrument was warmed for 10 minutes and calibrated using KCl solution. Electrical Conductivity of different samples was measured by conductivity meter.

Determination of chloride
10 ml of water sample was taken, added 1 ml of K₂CrO₄ (an indicator) then solution turned in yellow. Titrated against AgNO₃. Red-Brown colour is appeared in solution or white precipitation is found due to the presence of chloride.

RESULTS AND DISCUSSION
Physico-chemical parameters analysed for the selected samples is shown in Table 2.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>SAMPLING SITES</th>
<th>WSR1</th>
<th>WSR2</th>
<th>WSR3</th>
<th>WRS1</th>
<th>WRS2</th>
<th>WRS3</th>
<th>WSC1</th>
<th>WSC2</th>
<th>WSC3</th>
<th>WSI1</th>
<th>WSI2</th>
<th>WSI3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nitrate (mg/L)</td>
<td>38.43</td>
<td>42.68</td>
<td>71.19</td>
<td>54.11</td>
<td>46.21</td>
<td>57.33</td>
<td>52.04</td>
<td>136.16</td>
<td>360.07</td>
<td>30.84</td>
<td>188.09</td>
<td>96.95</td>
</tr>
<tr>
<td>2</td>
<td>Sulphate (mg/L)</td>
<td>111.91</td>
<td>25.19</td>
<td>305.71</td>
<td>85.24</td>
<td>67.13</td>
<td>52.04</td>
<td>136.16</td>
<td>360.07</td>
<td>30.84</td>
<td>188.09</td>
<td>96.95</td>
<td>293.61</td>
</tr>
<tr>
<td>3</td>
<td>Alkalinity (mg/L)</td>
<td>170</td>
<td>540</td>
<td>160</td>
<td>550</td>
<td>360</td>
<td>600</td>
<td>380</td>
<td>620</td>
<td>600</td>
<td>1920</td>
<td>2620</td>
<td>943</td>
</tr>
<tr>
<td>4</td>
<td>pH</td>
<td>7.5</td>
<td>7.3</td>
<td>7.4</td>
<td>9.0</td>
<td>5.7</td>
<td>7.3</td>
<td>7.2</td>
<td>6.5</td>
<td>5.3</td>
<td>8.4</td>
<td>11.9</td>
<td>9.4</td>
</tr>
<tr>
<td>5</td>
<td>TDS (ppm)</td>
<td>1270</td>
<td>920</td>
<td>1500</td>
<td>240</td>
<td>680</td>
<td>360</td>
<td>290</td>
<td>530</td>
<td>590</td>
<td>1600</td>
<td>2200</td>
<td>1920</td>
</tr>
<tr>
<td>6</td>
<td>Cadmium (mg/L)</td>
<td>4.973</td>
<td>0.0025</td>
<td>0.192</td>
<td>NA</td>
<td>NA</td>
<td>4.824</td>
<td>18.57</td>
<td>NA</td>
<td>47.70</td>
<td>0.337</td>
<td>NA</td>
<td>19.14</td>
</tr>
<tr>
<td>7</td>
<td>Iron (mg/L)</td>
<td>NA</td>
<td>4.983</td>
<td>0.738</td>
<td>NA</td>
<td>NA</td>
<td>2.707</td>
<td>18.57</td>
<td>NA</td>
<td>0.475</td>
<td>2.660</td>
<td>3.414</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>Zinc (mg/L)</td>
<td>10.25</td>
<td>10.87</td>
<td>11.89</td>
<td>11.91</td>
<td>12.17</td>
<td>12.93</td>
<td>12.93</td>
<td>10.34</td>
<td>7.798</td>
<td>12.42</td>
<td>7.000</td>
<td>9.481</td>
</tr>
<tr>
<td>9</td>
<td>Lead (mg/L)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>7.852</td>
<td>8.115</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>Total Hardness (ppm)</td>
<td>108</td>
<td>132</td>
<td>160</td>
<td>180</td>
<td>68</td>
<td>96</td>
<td>128</td>
<td>124</td>
<td>120</td>
<td>184</td>
<td>148</td>
<td>152</td>
</tr>
<tr>
<td>11</td>
<td>DO (ppm)</td>
<td>2.8</td>
<td>2.4</td>
<td>2.6</td>
<td>0.9</td>
<td>0.7</td>
<td>1.8</td>
<td>3.1</td>
<td>2.8</td>
<td>2.6</td>
<td>3.8</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>12</td>
<td>E.C. (mhos/cm)</td>
<td>0.445</td>
<td>0.411</td>
<td>1.919</td>
<td>0.972</td>
<td>0.597</td>
<td>0.543</td>
<td>0.673</td>
<td>1.290</td>
<td>0.230</td>
<td>1.919</td>
<td>1.221</td>
<td>0.772</td>
</tr>
<tr>
<td>13</td>
<td>Fluoride (mg/L)</td>
<td>1.42</td>
<td>2.47</td>
<td>2.03</td>
<td>0.35</td>
<td>0.81</td>
<td>0.24</td>
<td>0.63</td>
<td>0.82</td>
<td>0.21</td>
<td>0.57</td>
<td>2.60</td>
<td>0.46</td>
</tr>
<tr>
<td>14</td>
<td>Chloride (mg/L)</td>
<td>190.28</td>
<td>90.88</td>
<td>144.84</td>
<td>266.96</td>
<td>235.72</td>
<td>318.08</td>
<td>88.04</td>
<td>82.36</td>
<td>71.00</td>
<td>79.52</td>
<td>380.56</td>
<td>326.60</td>
</tr>
<tr>
<td>15</td>
<td>Phosphate (mg/L)</td>
<td>0.04</td>
<td>0.05</td>
<td>0.26</td>
<td>2.07</td>
<td>0.95</td>
<td>0.01</td>
<td>0.68</td>
<td>0.43</td>
<td>3.82</td>
<td>1.34</td>
<td>0.89</td>
<td>1.78</td>
</tr>
</tbody>
</table>

Nitrate
Figure 2(a) shows the concentration of nitrate in various water samples from collected areas. The level of nitrate was found from 25.85-188.09 mg/L. The main source of lead in groundwater is attributed to contamination of ground water with domestic sewage and livestock facilities, septic system, manure lagoons, fertilizers, household waste water, fertilizers natural deposits and agricultural runoff.

Sulphate
Figure 2(b) shows the concentration of sulphate in various water samples from collected areas. The level of sulphate was found from 25.19-360.07 mg/L, which was in permissible limits (200-400 mg/L). Increased levels of sulphate were due to industrial, anthropogenic additions in the form of sulphate fertilizers and discharge of domestic sewage in water bodies.

Alkalinity
Figure 2(c) shows the concentration of alkalinity in various water samples from collected areas. The level of alkalinity was found from 160-2620 mg/L shows that the minimum value of alkalinity is observed as 160 mg/L in the sample of WSR-3 while the maximum value is 2620 mg/L is observed in the sample WSI-2. This may be due to low water table and lower temperature bringing down the rate of decomposition of salts to a minimum there by increasing the alkalinity. Some of alkalinity levels are found extremely higher than permissible limits. Alkalinity is the sum total of components in the water that tend to elevate the pH to alkaline side of neutrality. Commonly occurring materials in water that increase alkalinity are carbonates, bicarbonates, phosphates and hydroxides.

pH
Figure 2(d) shows the pH levels in different water samples and it has been found that all the selected water samples are slightly alkaline in nature but all the samples are safe for drinking purposes as acceptable permissible limit is up to 8.5 (except WSR-1, WSI-2 and WSI-3) according to Indian Standards. Highest values are due to addition of effluents or sewage. Most of the water samples are slightly alkaline due to presence of carbonates and bicarbonates.

TDS
Figure 2(e) shows the minimum concentration (240 mg/L) is found in the sample of WSR-1 while maximum concentration (2200 mg/L) is found in the sample WSI-2. High value is due to the evaporation of or garbage deposition in to water body.

Cadmium
Figure 2(f) shows the cadmium concentration of different sampling sites. It is found that except WSR-1, WSRS-2, WSC-2 and WSI-2, other water sample contains cadmium levels. The main source of cadmium in ground water is due to contamination of ground water with domestic sewage. The waste from industries engaged in electroplating works, manufacture of textile, fertilizers, plastic etc. are normally rich in toxic trace metals. Beside industrial effluent discharge of untreated sewage in the roadside unlined channels may pollute the ground water due to seepage (line source).

Iron
Figure 2(g) shows the iron levels in various samples. The samples WSR-1, WSRS-1, WSRS-2, WSC-1 and WSI-2 do not contains the concentration of iron. The maximum conc. (4.983 mg/L) has been found in the sites of WSR-2.
Zinc
Figure 2(h) shows that the level of zinc in the collected samples from various sites is found in desirable limits. The value varies from 7.0 mg/L-12.93 mg/L in the samples of WSI-2 and WSRS-3, WSC-1, respectively.

Lead
Figure 2(i) shows the lead contents in various water samples and seen that lead is not found in the sampling sites except of WSC-2 and WSC-3. The main source of lead in ground water is attributed in contamination of ground water with domestic sewage and existence of heavy industries. Lead levels in drinking water are relatively low, because convectional water treatment procedures remove a significant amount of lead. Low pH and softness increases lead content of water by promotion corrosion.

Total Hardness
Figure 2(j) mentioned the total hardness present in the water samples. The total hardness have found in the range between 68 ppm from the sampling site of WSRS-2 and 184 ppm from WSI-1 which is in permissible limits and this water is also safe for drinking as the standard value can relaxed upto 600 ppm according to Indian Standards [IS : 1055] specification. Highest values are due to addition of effluents or sewage. The values of total hardness for all the sampling sites were found in the permissible limit.

Dissolved Oxygen
Figure 2(k) shows the levels of dissolved oxygen and minimum levels (0.7 mg/L) were found in the sample of WSRS-2 while maximum DO level (4.0 mg/L) was observed in the sample of WSI-2. DO values were found highest due to decomposition of organic matter, respiration, presence of iron and rise in temperature.

Electrical Conductivity
Figure 2(l) shows the values of electrical conductivity in water samples. The minimum value (0.230 mhos/cm) was reported in the sample of WSC-3 while maximum value (1.919 mhos/cm) was reported in the sampling sites of WSR-3 and WSI-1.

Fluoride
The fluoride concentration of water samples have been mentioned in figure 2(m). The fluoride concentration have been found in the range between 0.21 mg/L for sampling site WSC-3 and 2.60 mg/L for sampling site WSI-2. The value of fluoride for all sampling sites has been found in the permissible limit.

Chloride
Figure 2(n) shows the chloride levels in various samples. The minimum concentration (71.00 mg/L) have been found in the site WSC-3 and maximum levels (380.56 mg/L) have been found at the site of WSI-2 due to the decrease in water level, evaporation and deposition of company waste. All type of natural and raw water contains chlorides. It comes from activities carried out in agricultural area, Industrial activities and from chloride stones. Its concentration is high because of human activities. All the values of chlorides are in permissible limit.

Phosphate
Figure 2(o) shows the levels of phosphate in the collected samples from various sites. It was found that all water samples contain phosphate levels i.e., minimum and maximum values are in the range of 0.01-3.82 mg/l, respectively, and all values are in permissible limits.
Fig. 2 (a) Graph showing Nitrate values for different water samples

Fig. 2 (b) Graph showing Sulphate values for different water samples

Fig. 2 (c) Graph showing Alkalinity values for different water samples

Fig. 2 (d) Graph showing pH values for different water samples

Fig. 2 (e) Graph showing Total Dissolved Solids values for different water samples

Fig. 2 (f) Graph showing Cadmium values for different water samples.

Journal of Advance Engineering Technology and Sciences
Fig. 2 (g) Graph showing Iron values for different water samples.

Fig. 2 (h) Graph showing Zinc values for different water samples.

Fig. 2 (i) Graph showing Lead values for different water samples.

Fig. 2 (j) Graph showing Total Hardness values for different water samples.

Fig. 2 (k) Graph showing Dissolved Oxygen values for different water samples.

Fig. 2 (l) Graph showing Electrical Conductivity values for different water samples.
CONCLUSION

Water quality is dependent on the type of the pollutant added and the nature of mineral found at particular zone of industrial, commercial, residential and roadside. Monitoring of the water quality of ground water is done by collecting representative water samples and analysis of physico-chemical characteristics of water samples at different locations of Rewari city. From our observation we concluded that the levels of Sulphate, Chloride, Phosphate, Zinc, Lead, Total Hardness and Dissolved Oxygen were found in permissible limits. Increase in value of Nitrate, Fluoride, pH and Electrical Conductivity were due to domestic discharges. Increased concentration of heavy metal like Lead, Cadmium and Iron was due to high discharge of water from catchment area, industries and various drains. The samples near the industrial and residential area had higher values of TDS and Alkalinity. High level of TDS and Alkalinity was due to contamination of domestic waste water, garbage and fertilizers etc. Both these contents in water, in increased amount are harmful to living beings. On the basis of the above study and discussion it was concluded that the water in this area had very poor quality and is not fit for drinking purpose. So we can suggest that the water from infected sites should be used after proper treatment.

http://www.gjaets.com/
ACKNOWLEDGEMENT
The authors very grateful to St. John’s College, Agra for providing UV-Vis Spectrometry and Atomic Absorption Spectrometry (AAS) facilities, Jagdamba’s Laboratory, Dr Renu Sharma, Head, Department of Chemistry, NIET, NIMS University Jaipur, for her valuable suggestion and cooperation in collection of data and grateful guidance.

REFERENCES